
COSC-251, Computer Systems Fundamentals
2004, spring

Syllabus

Instructor:

Prof. Richard K. Squier
St. Mary's Hall, Room 339
Computer Science Dept.
Georgetown University
202-687-6027
squier@cs.georgetown.edu

Office hours: Tue-Thu, 3:00-4:00, or by appointment, or drop in anytime.

Description:

The course takes two different approaches to understanding computer systems. One concentrates on
low-level hardware/software systems interactions by incrementally building an extremely primitive
software system (a booter/loader/OS), that boots a standard x86 in real mode and provides simple
services (loading and execution, and keyboard and video I/O). The other approach looks at a pipelined
processor implemented in verilog. Here, higher-level system interactions are explored by modifying
simulation code of a pipelined MIPS processor to include a series of memory hierarchy components:
main memory, a Memory Management Unit (MMU), and instruction and data caches (direct and
associative). Test programs and simulation code are developed to confirm correctness and evaluate
performance. Weekly assignments, two semester projects, and a final exam. Course notes are posted
after lectures on the course web site. Prerequisite: COSC-250.

Texts:

Required:
Computer Organization and Design, 2/e, Hennessey and Patterson (Morgan-Kauffman)

Recommended:
Introduction to Computing Systems, 2/e, Patt and Patel (McGraw-Hill)
The material on the C programming language and the IA32 (x86) architecture will be helpful.
However, other sources for this material are easy to come by, for instance, online sources.

Assignments:

Assignments consist of a series of exercises culminating in two semester projects: (1) picoOS: coding a
low-level software interface to system hardware resoures for x86 architecture, and (2) MIPS
simulation: modifying a verilog model of the MIPS processor. Specific exercises will be posted on the
course web site.

mailto:squier@cs.georgetown.edu

 Readings:

COD, chapters 5.1-.6, 5.8, 6.1-.8, 7.1-.4, 8.1-.5, and Appendix B. This reading will be
coordinated with the development of the MIPS simulation project. Also, online material will be
posted on the course web site (IA-32 manuals, debugger documentation, boot information,
BIOS information, assemblers and compilers and their documentation, boot floppy images,
links to tutorials.

 Exercises:

Reading and homework exercises will be posted on the course web site. They include a series of
warm ups for the picoOS project:

1. The 80186 standard architecture: using a low-level debugger, assembly and unassembly, x86
addressing, interpreting instruction bytes, writing to VRAM, modifying boot blocks and writing
them to disk.

2. Creating a runtime loader for executables, loading executables to disk using BIOS-13, booting,
using the FAT structure to locate executables on disk.

3. Having your booter load an executable and initialize its environment; the executable writes
directly to VRAM.

4. Redoing the above, but using C for higher-level routines, linking your C modules to your
assembly modules.

5. Creating an OS service for video output, accessed via interrupt routines. Having your picoOS
booter set it up a boot.

6. Adding a keyboard handler to your OS.
7. Creating your OS main loop with command input.

 picoOS Project

Expand the exercises to give your OS the following capabilities.

(1) issue a prompt to screen

(2) read keyboard input to detect two commands: "L" and "R".

"L" causes the system to display a list of programs that can be loaded and run by the OS.
Program file names can be single characters.

"R n" loads and runs the n-th program (or use whatever naming system you care to implement
to refer to the user-level programs).

(3) Load to your bootable disk at least three user-level programs that can be listed, "L", and run,
"R". These programs need not do anything but produce some output so that one can tell they
actually ran. They can loop infinitely after that, or you can provide a means for user-level
programs to return to the OS's main loop. (N.B. For that last bit, a new OS service routine to
jump back to the OS would probably be the best bet.)

Any enhancements beyond the bare bones capabilities receives extra credit, of course; for

instance, video modules that keep track of screen position, keyboard interrupt service that does
scancode-to-ascii conversion, or OS system calls for user-level programs that provide keyboard
services.

 MIPS simulation project

BEQ test
The end goal of the MIPS-simulation project is to write a verilog simulation to show the
performance of pipelining and caching. We will modify the basic MIPS cpu pipeline code
(~squier/verilog/h2.vl), and write test benches to demonstrate performance. The project will be
broken up into incremental pieces. The final project is due on the date and time of the final
exam. Turn in each part as soon as you have it ready. I will not announce deadlines for the
individual project parts. Do not delay moving ahead with this project as there is not much time
left in the semester.

For MIPS-simulation-BEQ-test, we will

(1.) Write a test bench to test the correctness of the BEQ instruction execution. You may want to
start by modifying the test bench, prog3.vl. You should write up a short description of how your
test bench tests the BEQ execution and what conclusions you draw from the simulation output.
If necessary, modify the cpu module in h2.vl to correct any problems. Turn in hardcopy of any
verilog code used and simulation output.

(2.) Modify h2.vl to change the register file to be negative-edge triggered. Write a test bench to
verify correctness.

You may want to do parts (1.) and (2.) in reverse order. For both parts, include in your writeup
either a disk w/ your source code, or indicate the location of your source code on
karma.georgetown.edu.

 Memory units
In this part, we will move memory accesses to separate modules. The pipeline clock will be
stalled (disabled) until a ready signal is returned from the memory unit. For the first version we
will have two modules, one for IMemory, and one for DMemory. Accesses to the two memory
units will be in parallel, so both memory units must be ready before the pipeline clock is
enabled. (It may be the case that only the FETCH stage is doing memory access, in which case
only the Imemory's ready signal is needed to enable the pipeline clock.)

Main Memory
We now add a main memory unit that services both the IMemory and DMemory units. Since
this memory unit services both, the IMemory and DMemory units must access main memory
sequentially if both units are needed during the same pipeline step.

 Direct Cache
Next add direct caches to both the IMemory and DMemory. On cache hits, the read or write
executes without stalling the pipeline. Misses cause the pipeline to stall while a new cacheline
is fetched.

Associative Cache
Modify the caches to be associative. (They can be n-way or fully associative.)

Grading:

Grades are determined by one-on-one interview inquiries into your projects and a final exam. Keep all
your work together to bring to these interviews. Weights will be determined as the semester develops
and the general level of progress on projects can be assessed. A final interview will detail the
considerations and information and method used in determining the final grade. Extra credit is given
liberally for projects or other work that go beyond the stated requirements.

Academic Integrity Policy:

This course is, of necessity, filled with a great many details that are merely peripheral to what I hold is
the intellectual content of the course. In assigning grades, my job as instructor is to ascertain your
growth in understanding that intellectual content during the course of our studies together. Course
assignments and projects require you to delve into the sea of minutiae that goes along with
understanding the intellectual content. Many times, this minutiae may actually seriously hamper your
efforts to understand. For that reason, I encourage you to freely exchange information.

The default policy for the Computer Science Department is amended as follows. You are free to discuss
problems and solutions of any assignment or project with your classmates or others. You need not cite
these conversations nor indicate which parts of your submitted material was garnered from such
conversations. You are free to collect information from any source, electronic or otherwise, and you
need not indicate the original source nor that the material did not originate with you.

For most courses, this policy probably would make little or no sense, but you will soon see that here it
makes perfect sense: there simply is too much detail to be attended to, and borrowing is so central to
the enterprise, that annotating this would encumber the effort beyond all practical utility. In addition, in
this context, I consider it a fault to withhold useful information from others. You will discover that my
grading system does not depend on evaluating your progress based on material of unknown origin.
However, I will use your submitted material as a guide in exploring your progress and effort. Simply
put, we will get to know each other.

You will be given every opportunity to demonstrate your knowledge and ability through written and
oral means. If you feel you are not being evaluated thoroughly enough, it is incumbent on you to bring
this to my attention while there is still time to address your concerns before grades are submitted. You
are welcome to discuss these issues with me at any time. You might find the recently adopted
Association for Computing Machinery (ACM) guidelines on plagiarism interesting:

http://www.acm.org/pubs/plagiarism%20policy.html

