
1. 1 cycle MIPS performance
3. general pipelining
8. MIPS pipe, LW
12. MIPS performance, piped vs non-piped
14. arrays, piped
15. hazards

What if we make control more complex?
Set clock by opcode?

Required delay before using written data.

Insert NOPs (BRnzp #0)? Compiler does this, or HW?

SUB R4, R5, R1
ADD R1, R2, R3

Positive edge-triggered FF:

output changes on rising clock

Negative edge-triggered FF:

output changes on rising clock

SUB R4, R5, R1

ADD R1, R2, R3

Instruction fetch:

PC++ ==> PC

 IF/ID
PC++ ==> PC
Instruction ==> Instr

MIPS: LW $2, 15($1)
 [op | rs | rt | off]

LC4: LDR R2, R1, #15
 [op | SR1 | DR | off]

Decode/reg fetch:

IF/ID ID/EX

 PC ==> PC

 SR1 ==> SR1
 SR1out ==> SR1out

 offset ==> SEXT
 ==> offset

 Instr.SR2 ==> DR

 Instr.OP ==> decode
 ==> CTL

Execute:

ID/EX EX/MEM

 PC ==> ADD ==> PC

 SR1out ==> ALU
 offset ==> ALU
 ==> Res

 DR ==> DR

 CTL ==> CTL

MEM:

EX/MEM MEM/WB

 PC ==> BRmux

 Res ==> MEM.addr
 MEM.out ==> MEMdata
 Res ==> REGdata

 DR ==> DR
 CTL ==> CTL

MEM:

MEM/WB

 MEMdata ==> RegFile.in

 DR ==> RegFile.DR
 CTL ==> RegFile.rw

Could we possibly send data from pipeline
stage to stage?

Sub is stuck in Fetch,
repeatedly fetched
PC not incremented

Instruction written to 1st
stage pipeline register is
 OR $0, $0, $0

Sub advances to Reg-
Read at t == 5

PC incremented
next instruction fetched

add $1, _, _
sub _, $1, _

Data available next tick.

Forwarding (feedback) works.

lw $1, _, _
sub _, $1, _

WHY NOT forward Dmem.out?

DELAY = 200ps (memory) + 200ps (ALU)

SLOW down clock to 400ps?!?

Forward from WB instead, insert NOP

Forwarding Control: ID/EX.(rs, rt) =? (EX/MEM.rd or MEM/WB.rd)
 ===> Set MUXes

Feedback paths to ALU go to both inputs.
Hazard detection sets MUXes: Opcode needed in pipe stage registers for detection.

Can we demonstrate that there
aren't any structural hazards for
forwarding paths for operate
instructions?

AND $2, _, _

ADD $1, $2, _

SUB _, $2, $1

OR _, $1, $2

