
Lec-3d-VMsummary

MAPPING

Virtual Space
--- does not exist
--- we "imagine" it exists

Content of Virtual Space
--- exists, physically
 or
--- does not exist at all

Content's Name is
--- Virtual Address

Name is used to find
--- Content's location

Processor uses Names
--- which are mapped
 to locations

Location is used
--- to get Content

x0000: x1234
x0001: x2345
x0002: x3456

x5000: <no data>
x5001: <no data>

xFFFE: x0A12
xFFFF: xF0D2

x3000: x1234
x3001: x2345
x3002: x3456

Let's use LC3
--- 16-bit words (2B)
--- 2B-addressable memory
--- 16-bit physical addresses

Add:
--- 16-bit virtual address space
--- 4k word pages
--- page number = 1st hex digit of Virtual Address
--- frame number = 1st hex digit of Physical Address

Aside: General Extended Names,
--- Process ID
--- Thread ID
--- Physical Disk Address (Head, Cylinder, Sector)
--- Logical Disk Sector
--- File System Name (e.g., "/bin/rm")
--- User/Owner Name
--- Network address
--- Host/Domain name
--- Distributed OS object name
 etc.

 ...
 x0A12
 xF0D2

Disk block = 2^8 words = 256 words = 512B

Page = 2^12 words = 4k words = 8kB
 = 2^4 blocks = 16 blocks

Memory = 2^16 words = 64k words = 128kB
 = 2^8 blocks = 256 blocks
 = 2^4 Pages = 16 Pages

Page Table = 16 entries (PTEs)

Disk size = 2^8 pages = 256 pages = 2MB

Processor generates a Name
--- a Virtual Address
--- sent to VMAR, e.g.,

 LDR R1, R2, x5

generates the VAddress x1000 + x5

LDR R1, R2, x5

Name is translated to location:
--- physical memory address
 caches: yet another name
 memory: a physical location
OR
--- physical disk address

Data returned
--- via Disk
--- via Memory
--- via Cache
--- via MDR

R2 ===> SYS_BUS
 ===> MAR ===> Map
 ===> ADDR_BUS
 ===> Mem.ADDR (address decode)

Mem[x3001] ===> DATA_BUS
 ===> MDR
 ===> SYS_BUS
 ===> RegFile.in ===> R1

Note:
Communicating w/ Disk is more
complex.

Page Fault Exception handler
code manages it.

TLB is a small cache.

[P# : F#] not in TLB? ===> TLB miss exception
--- Jump to TLB Exception Handler code

--- Exeception Handler code:
 map (PT) is in memory
 --- get PTE, i.e., [P# : F#]
 --- load TLB
 --- restart instruction

x0000:
 ...
x1000:
 ...
x2000: <data area>
 ...
x3000:
 ...
x4000: LDR R0, R2, x5
 ...

x8000: x0 x4 x0 x1
x8001: x1 x2 x0 x1
x8002: x2 x2 xA x6
x8003:
x8004:
x8005:
x8006:
x8007:
x8008: x8 x8 x0 x1
x8009: x9 x9 x0 x1
x800A:
x800B:
x800C:
x800D:
x800E:
x800F: xF xF x0 x1

x9000: LDR R1, R3, x1

 ...

xF000:
 ...

 x8 x8 1 1
 x9 x9 1 1
 x0 x4 0 1
 x3 x7 0 0

x8000

x1201

x1201 x8001

User Program: PC[x0000] R2[x1000]

fetch ===> MAR[x0000] ===> x0 to TLB
 ===> TLB[x0 x4] ===> x4000

IR[LDR R0, R2, x5]
 ===> MAR[x1005] ===> x1 to TLB
 ===> TLB miss

PC[x9000]
fetch ===> MAR[x9000] ===> x9 to TLB
 TLB[x9 x9] ===> x9000

IR[LDR R1, R3, x1]
 ===> MAR[x8001] ===> x8 to TLB
 ===> TLB[x8 x8] ===> x8001

MDR[x1 x2 x0 x1] ===> R1
 TLB[x3 x7] <=== x1 x2]

PC[x0000] (restart instruction)

Page Table Entry, page in memory

 1101 0011 0000 0001

Page Table Entry, page not in memory

 1101 0110 1011 0000

NOTE

--- OS can move OS pages around, or to disk.
 Just change PT.

--- Multiple processes?
 multiple PTs;
 PTs in OS data area;
 switch PTBR to point to current PT.
 OS part of both PTs is the same.

 R2[xFE00]

poll:
 LDR R1, R2, x0
 BRzp poll

LDR R1, R2, x2

Device address decode recognizes xFE00 and xFE02.
Keyboard data moved to R1.

Suppose TLB[xF x4] xFE00 ===> x4E00 (references a word in memory!)

Solution: TLB[xF xF] xFE00 ===> xFE00 (accesses KBSR)

1st access: cache miss
 x0000 into cache via Mem-IO-bus
N-th access: cache hit
 x0000 from cache ===> MDR
===> never see Ready Bit!

Solution:
Add Do-Not-Cache bit to PTE
===> causes cache miss every access

