
Addresses refer to some number of bytes.

How many bytes is determined by the operation's data type.

Native data types
 -- data register size (32-bit, e.g.)
 -- byte operation
 -- half-word operation
 -- word operation
 -- MAR size (40 bits, e.g.)
 -- load word
 -- load double word
 -- load quad word
 -- virtual address (52 bits, e.g.)
 -- page load

We can view memory as divided up
 -- aligned, non-overlapping chunks
 -- aligned: first byte of first chunk is at x0000, e.g.
 -- non-overlapped: memory is "tiled" by chunks
 -- chunk size depends on what we are interested in
 -- low address bits are offset into chunk
 -- high address bits are chunk number

For 2-Byte words, we can think of the 16-
bit addresses as split into two parts:

 -- Address[15:1] is word number
 -- Address[0] is byte offset into word

Each word has byte-0 and byte-1.

Compound objects

 -- hierarchical inclusion
 -- higher-level composed of k lower-level objects
 -- different offsets at each level

Of course, we could also see a D-word as composed
of bytes.

Suppose we have a cache. Say cache blocks are 16 B. We
can say a cache block is 4 D-words, or 8 words, or 16 B.
We can think of memory divided up into 16 B "cache block-
sized" pieces.

Of course, we can again flatten the hierarchy
however we care to. Here the D-word# no
longer refers to which D-word in a cache block,
but which D-word of the entire memory.

Here, we consider the cache block to be
composed only of bytes.

And so on to pages, etc.

Different sized objects align
by their low-order address
bits. A 16-Byte object aligns
at addresses w/ last 4 bits
all 0; 8-Byte objects align w/
low 3 bits all 0.

Which objects are relevant
depends on context of
discussion.

For aligned objects, we can
think of the bit fields as
indicating which object
within a larger object. Here,
4B words within 4-word
blocks.

A large object, e.g., a page, can be
thought of simply as containg some
number of bytes. Here, pages align
w/ 6 low bit equal 0 and page size
is 64B. Of course, we can consider
the page as having 4 4-word blocks
or 16 4B words.

For a DM, some number of bits are
index into the cache. Here there
are 4 words per block. The number
of entries determine how many bits
are used for indexing. If the DM
has lots of entries, the index bits
can include some of the low-order
page# bits.

Communication between a
CPU and L1 looks just like
the CPU-Memory
communication when no
cache is present. From the
CPU side it looks like a
memory interface.

We can think of aligned, cache-sized
objects. The upper bits would be thought of
a the C#, or which cache-sized object in
memory. The cache index is then which
block within a cache-sized object. The low
bits are the offset into the block.

Blocks with different C#'s but the same
index collide. The C# is the tag. Here there
are 64 entries and 6 index bits, 4
word/block and 4B/word; 1 kB per C#.
Alignment is w/ low 10 bits 0.

If the discussion context was L2 instead,
then the bits considered C# and index
would shift according the L2's size and
number of entries. Offset bit fields would be
by block/word sizes.

Note that the degree of associativity has no
effect on these numbers. n-way associatvie
has n DMs: it allows collisions to be
accomodated. The total size of the cache is
independent; the DM size sets the
assignment of bit fields.

Given an address, accessing the item
involves the following (for read, write is a
little different:

-- index into the DM (or mulitple DMs)
-- get the cache line (tag+block+otherBits)
-- compare the two tags
-- use W# to select which word in block
-- send word to CPU (or write data to word)

