
Addresses refer to some number of bytes. 

How many bytes is determined by the operation's data type.

Native data types
    -- data register size (32-bit, e.g.)
        -- byte operation
        -- half-word operation
        -- word operation
    -- MAR size (40 bits, e.g.)
        -- load word
        -- load double word
        -- load quad word
    -- virtual address (52 bits, e.g.)
        -- page load

We can view memory as divided up
    -- aligned, non-overlapping chunks
        -- aligned: first byte of first chunk is at x0000, e.g.
        -- non-overlapped: memory is "tiled" by chunks
    -- chunk size depends on what we are interested in
    -- low address bits are offset into chunk
    -- high address bits are chunk number



For 2-Byte words, we can think of the 16-
bit addresses as split into two parts:

  -- Address[15:1] is word number
  -- Address[0] is byte offset into word

Each word has byte-0 and byte-1.

Compound objects

  -- hierarchical inclusion
      -- higher-level composed of k lower-level objects
  -- different offsets at each level



Of course, we could also see a D-word as composed 
of bytes.

Suppose we have a cache. Say cache blocks are 16 B. We 
can say a cache block is 4 D-words, or 8 words, or 16 B. 
We can think of memory divided up into 16 B "cache block-
sized" pieces.

Of course, we can again flatten the hierarchy 
however we care to. Here the D-word# no 
longer refers to which D-word in a cache block, 
but which D-word of the entire memory.

Here, we consider the cache block to be 
composed only of bytes.

And so on to pages, etc.



Different sized objects align 
by their low-order address 
bits. A 16-Byte object aligns 
at addresses w/ last 4 bits 
all 0; 8-Byte objects align w/ 
low 3 bits all 0.

Which objects are relevant 
depends on context of 
discussion.

For aligned objects, we can 
think of the bit fields as 
indicating which object 
within a larger object. Here, 
4B words within 4-word 
blocks.

A large object, e.g., a page, can be 
thought of simply as containg some 
number of bytes. Here, pages align 
w/ 6 low bit equal 0 and page size 
is 64B. Of course, we can consider 
the page as having 4 4-word blocks 
or 16 4B words.

For a DM, some number of bits are 
index into the cache. Here there 
are 4 words per block. The number 
of entries determine how many bits 
are used for indexing. If the DM 
has lots of entries, the index bits 
can include some of the low-order 
page# bits.



Communication between a 
CPU and L1 looks just like 
the CPU-Memory 
communication when no 
cache is present. From the 
CPU side it looks like a 
memory interface.

We can think of aligned, cache-sized 
objects. The upper bits would be thought of 
a the C#, or which cache-sized object in 
memory. The cache index is then which 
block within a cache-sized object. The low 
bits are the offset into the block.

Blocks with different C#'s but the same 
index collide. The C# is the tag. Here there 
are 64 entries and 6 index bits, 4 
word/block and 4B/word; 1 kB per C#. 
Alignment is w/ low 10 bits 0.

If the discussion context was L2 instead, 
then the bits considered C# and index 
would shift according the L2's size and 
number of entries. Offset bit fields would be 
by block/word sizes.

Note that the degree of associativity has no 
effect on these numbers. n-way associatvie 
has n DMs: it allows collisions to be 
accomodated. The total size of the cache is 
independent; the DM size sets the 
assignment of bit fields.

Given an address, accessing the item 
involves the following (for read, write is a 
little different:

-- index into the DM (or mulitple DMs)
-- get the cache line (tag+block+otherBits)
-- compare the two tags
-- use W# to select which word in block
-- send word to CPU (or write data to word)




