
Pick a time window size w.

In time span w, are there,

Multiple References,
to nearby addresses:
 Spatial Locality

Repeated References,
to a set of locations:
 Temporal Locality

Take advantage of behavior
patterns.

If stable patterns last,
 Long Enough (?)

W ==> total execution time, everything is local

W ==> one instruction time, single address is local

Short time ===> Small set

Long time ===> Large set

Technology Tradeoffs

Large set, Many bits ===> Bad: (Bandwidth, Latency), Good: ($, Area, Watts) per bit

Small set, Few bits ===> Good: (Bandwidth, Latency), Bad: ($, Area, Watts) per bit

Most changes in S0 refer to items in S1

Most changes in S1 refer to items in S2

 etc. ...

Transfer a block at a time:

--- latency for 1-st word

--- remainder at bandwidth rate, hopefully

Block size varies from level to level (2X)

--- Pay delay for block transfer, but what if other words never used?

AMAT can be w.r.t.

Global performance
 or
Level i performance

What's important?
 Overall performance = execution time
 or
 = average CPI

A Turing Machine Tape

R/W head moves L or R,
copy a region at a time.

Cost is proportional to distance
and size of region copied.

Cache Organization and Methods

--- Big Memory, Small Cache ===> Block Mapping
 (how to place blocks in cache)

 Associative: anything goes anywhere, check contents (contains address)
 complex + expensive (area, power)

 Direct Mapped: (like a Reg File, but words are blocks)
 simple + fast, but too restrictive placement?

 Set Associative: (hybrid of Associative and Direct Mapped)

Some Block Parameters

--- How big? Spatial locality captured by fetching neighboring data/instructions.
--- Replace what when? Working set captures temporal locality.
--- Writing, when, where? Change locally or globally, maintain correct program behavior.

00 ... 0000

00 ... 0100

00 ... 1000

Byte addressable
4-Byte words
8-word blocks

00 ... 1011

We use TAG bits to identify which block.

But, what about at startup?

--- Content is random

--- boot process initializes valid bit (V = 0)

Stall,
Access Memory
Write Cache (tag + data)
Set Valid bit
Restart Instruction

Example (ignore block and byte offset bits)
 DM, 3-bit index

10110

LC3 assembly:
LW R1, R2, #0

MIPS assembly:
 L $1, 0($2)

LC3 assembly:
LW R3, R4, #0 11010

LC3 assembly:
SW R5, R4, #0 11010

 VALID = 1
 +
 TAGs match
Write data to cache
Write data to memory
 (when?)

LC3 assembly:
SW R7, R6, #0 10010

 VALID = 1
 +
 TAGs do not match
 = Collision

Stall, write old data to mem
write data to cache
write tag to cache

write new data to mem?

Example:
DM, 32-bit address, byte-addressable, 1-word blocks (32-bit word = 4-byte block)

Need only compare upper 20 bits as tag, index bits are the same for any item in same slot.

LW R1, < address = 1100110 >
LW R2, < address = 0101110 >
SW R3, < address = 1100110 >
SW R4, < address = 0101110 >
LW R5, < address = 1100110 >

Can happen at any level or type of caching:

Direct Mapped, Conflicts (as above)

Fully Associative, Capacity
 e.g., Virtual Memory Page Thrashing

Stride in multiples of 2^13 :
===> indices same,
 tags differ.

How to make system
crawl, worst case?

How can we fix this?

Bigger cache? How big?

How much is the programmer responsible for?

Portable code, different architectures?

Irregular data layouts a solution?

Compiler's responsibility?

Each cache line = [tag bits] [data block bits]

Total cache size = (# lines) X (# tag bits + # data bits)

Storage overhead = (total # tag bits) / (total # data bits)

Amortized latency per word
 ===> 1 / 16

Averaged over selection of programs: Your performance may be different.

00

00
00

10
00

00

00
00

10
00

00

00
00

10
00

 associativity higher ===> tags bigger (overhead?)

Space Overhead, N-way Associativity

Assume fixed-size cache, C Bytes
Total # (address bits) = A

What's the metric?

Compare (MR X Miss Penalty) == actual improvement

performance / $?

If $ increment is small ==> bigger N.

What's our workload?

--- How many READS
--- How many WRITES
--- How many READS after WRITES

Write Through

Write Back

Where should we look for data?
--- in buffer?
--- in memory?
--- how do we search buffer? Stall if not empty?

Allocate
block?

Write word
to Mem.

Fetch block?
Choose victim block.
Evict victim?

Invalidate words,
cache-write word,
cache-write tag,
 (mem-write word).

Invalidate words,
Mem-write victim,
cache-writes.

non-dirty write-back or write-through

write-back only

Choose victim.
Evict? Read block to cache,

cache-write word
(mem-write word).

non-dirty write-back, or write-through

Mem-write block,
read block to cache,
cache-write word

write-back w/ dirty replacement

See, LC3-based cache projects:
http://pages.cs.wisc.edu/~karu/courses/cs552/spring2009/wiki/index.php/Main/CacheModule
http://www.ece.ncsu.edu/muse/courses/ece406spr09/labs/proj2/proj2_spr09.pdf

Access multiple items in same row.

Overlap sending column address
with
Accessing item

Only send column address once,
then
send count of items to access

Improving DRAM bandwidth (other than faster cycle time)

Bus Cycle Timing, 4-word Access

