Sl

NAME

Mid-term 3, 2013.

C
READ THIS

NOTE: includes some corrections to questions.

The purpose of exam questions is to gauge the degree to which you have absorbed the material covered. Be aware of each
question's goal: try to demonstrate (any) relevant knowledge. Explain your thinking. You may insert comments and
explanations that are off the topic. Some questions likely have errors. Comment on such difficulties: saying something
like, "This question is stupid," is a good start. Select your questions: do the easier first; come back to the harder; do parts
of a question. Partial and extra credit will be given liberally. Obviously, longer and harder problems get proportionally

more credit.

Notation: "#" decimal number, "x" hex number; any other number is decimal.)

A user process runs on this LC3 system:
--- Virtual Memory (VM) with a TLB

--- 16-bit virtual and physical addresses, word addressable

--- 16-bit data words and instructions

--- 4k word pages and frames: x1000 words per page

------- C code

int A[1000];

int main(void)
A[6666] =
return(0);

The process's C code and assembly code is at right. The data segment

includes a one-thousand word array, A. (Recall that ".BLKW 1000" is
equivalent to 1,000 lines of ".FILL x0".) The VM map is shown
below. Register values are shown just before the STR instruction

executes.

Execution proceeds as follows:

9

{
9 =— /ng Access.

------ assembly code: --------------
.DATA SEGMENT

const_a: .FILL #99 --off =0
const _b: .FILL #6666 ;-- off = 1
A: .BLKW #1000 ;-- off = 2
const_c: .FILL x0 ;-- off = 1002

--- Preamble: GDP <===x5000; jump to "main".

--- main: R1 <=== #99
--- main: R2 <=== #6666

--- main: R3 <=== address of array A == (GDP + 2)
--- main: R3 <== R3 + R2 == (address of A[#6666])

16-bit Page Table Entry: [F#, (other), M, P]

--- F#, 4-bit frame number
other PTE bits:
--- 'V (1: valid)
--- A (1: accessed)
--- D (1: dirty/modified)
--- L (1: locked in memory)
--- C (1: cache-able)
--- W (1: write permission)
--- U (1: user mode permission)
--- PID, 3-bit process ID
--- M (1: mapped, i.e., allocated)
--- P (1: page present in memory)

If P=0, the upper 8 bits are a disk page
number.

.CODE SEGMENT

main:

LDR R1, GDP, #0
LDR R2, GDP, #1

ADD R3, GDP, #2
ADD R3, R3, R2
STR R1, R3, #0

VM
addcess Mg mery W «p

XFFFF
0S
space

x8000 GDP
stack 5€9. P\,
% 5000 ./Afa SeJ. Rz
R3

2 0000 .code seq.

X5000

99

#4444

x5002+ #4644

PT "
Q. Assume the user's segments are as follows: ‘/) rx,wie 1
--- code: 3k instructions . Faqge # PR
--- data: 1003 words each i S MM & Yk page. J frame # ':1 E
--- stack: 1k words So) 1 page ﬁq ¢ fejmmf 0 1 - 4
The system does not allocate pages that would ﬁ ML l//V) 2 0 ’ f‘:
be empty. In the page table at right, fill in the M o map 2%
bit, (0: not-mapped, 1: mapped). cole 1 1w PR =0 3 0
Only the user's portion of the PT is shown; the . Y y 0
OS portion is irrelevant. Explain each non-zero Jﬂ-+q 5 m PH< 5/ £ 7]
Thoe wn the mepped pases (mepped % dick o1 6 fremes) . 4 1

Q. All the user's pages have been accessed and are in memory. In the PT above, for each mapped
page, put in a frame number. Choose any physical frame that is available. Physical frames xF and x0
are reserved for OS use.

{:m,‘w\o.; 0w E e aw;.(AlL: 1-F . TLB

Crrse Qf&«ves ,2,3 44\ PAYS O}S—; e P“JOC #][NU;\C#)/
7 Y 2]!

wi s |

0

i’ ph ’&t PTE j"? ﬂuﬂx ~ T/.B
ot et i

Q. No other process has evicted any of the process's TLB entries. The TLB is fully-associate. Given
your PT entries above, fill in the TLB above. When the STR instruction executes, will there be a TLB
miss? Why or why not?

Yo TLB wiks &u\ &“’w‘i}})'\-‘ PK=0 s i PTE o TLB,
)) = X 4L
Date, access i éﬂ addres 1 R = 500 < WAW[% 7%} " ﬁ%7

X6666 = ¢Cozv)+e 2 7k wnw»\aﬁw) 4,
; B~y X.$002 fé’v“)
bk+e . 1T 3650000000 +X1000 ng net presext im

& coo < AL1JL“"“’ g 0 X4L08 = fage¥ 4 = TEB wiss

Q. The TLB-miss exception handler will send a "SIGSEG" signal to a process that tries to reference an
un-mapped page. This will cause the process to abort, issuing the error, "segmentation fault." Why will
the process above be aborted?

_mt STR CMS+(UC+‘&0 ﬂ»}mww\, om &éél‘eS‘[MmN (/A/’)'n&’ﬁf)eal W (&x{)
D\M)\Qr w}“ &\‘)WQL he rroccf_g

Continuing with the above example, the process "forks" a child process by duplicating itself: all memory pages are
copied, and a new PT is allocated to the child. For instance, suppose the above processes code included,

proc = fork();
if (proc == 0) { exec("foo"); }
else { wait(proc); }

The parent's code pages are copied to the child, and both child and parent execute the same code after the fork(),
except the OS gives the child a return value of 0 for fork(), while the parent gets the child's PID. The child here
then overwrites its code segment with code from file "foo" and executes that instead.

However, to save time, the OS can create the child process without allocating and copying: it copies the parent's
PT to the child process. This is called "lazy" forking. If and when a page is written by the child, then the OS copies
the page and updates the child's PT. For instance, exec() here would cause the code page to be copied, and then

overwritten. The OS detects the need to copy by initializing all child PT entries w/ W = 0. The exception caused
by attempting to write will allow the OS to do the lazy copying.

Q. As described above, the process forks a child, and the OS uses "lazy" forking. Show the child's
initial PT below. The child's PID is 0010 (x2), the parent's is 0001 (x1).

MM% i Pr childs et

lo.';trm ‘? PM%+I) fage # fmme# PID W 74
pornls b Same Pmmes] 2.1 0 TL B tnes 4-L ane

o ot | .

; Fage # Frame #£71D Hfrory

3 50, 27 i exec () ownwvies
7 > 3 ’ paop,’é’ 0, cww‘nj

51 2 Z10 D g |z copy £ new frame
47 - 1 befne widmq Chl{

PT @ Correspoanj@_ t-pJfJLens.

Q. Assume the TLB is as you showed in the above questions. The child does 'exec("foo")'. Show the
TLB content just after exec() completes. Pick any available frame to use as the frame for the copied
page. Assuming no other pages are in memory other than shown in the TLB, would the OS choose a
frame for this copy that would cause a page fault (either to write back, or later read in)? Why or why not?

There we Rt § fue friumes waifal e (MA] Jume wwopt 0153, F)
\'\0 ‘r\e‘))—{'e /ﬁ,J(ﬂ#smepa% M\)/M/7 T/\(MJO&? hr&/tn} 0"# 78
\’WQ)l?\QX @&59/) 0 Ad W\}t ﬂ,w\l) nesidet Piye 2 LK caune a
(Pa,},q,\mﬁ;{

The processor fetches a user program instruction and tries to execute it,
PC =x0022. The VM map is shown at right, physical memory is shown
below. The PT is in virtual page x8, which is mapped to physical frame

xA. Note, for clarity's sake, PT entries include page numbers.

Q. What is the instruction's virtual page number? What is

the physical address of its PTE? To which physical frame is

that page mapped? What is the instruction's physical

memory location? What is the instruction?

The t)n#(ud}‘cmg P¥ = (). M PTE an%? i vn the PT

%d";o,) e’wsu’caﬂ addcess xAQ0Q. Page X0 i mapped 3
Frame XY ‘I’LQ (;V‘d'(u(-hé’n N J,,Ayn‘“f) 4ddress w4022, Ui

LDR R R2, %5

Q. The instruction at x4022 is making a memory reference to

address R2 + x5. The content of R2 is shown at right. What virtual
address is being referenced? What segment is that reference to?

What does physical address does that virtual address map to?
RZ2 +x5 =x1000 + x5 = yx|00%5 . ‘11;5 wm JM wa’s Jut .(e]md“.

The PTE o} XA30| sAows Page X1 maps % Frame x X . The plyynéqﬂ address
P’l"StéaI Mem

s X 2005%.

ﬁ” 2 x0000:

x1000:
usel
Space

Frowe §

TLB \

eXcep on

... handler

UN \\%o‘(
& =1

x2000:
x3000:
x4022:

x8000:

P"]‘ Toble

xF000:

MCMor? w\ancA
I/o %

xA000:
xA001:
xA002:
xA003:
xA004:
xA005:
xA006:
xA007:
xA008:
xA009:
xA00A:
xA00B:
xA00C!
xA00D;
xAO0OE:
xAO00F:

<data area>

LDR RO, R2, x5
LDR R1, R3, x1

x0 x4 x0 x1
x1 x2 x0 x1
X2 x2 xA x6

x0 x1
x0 x1

8
=

xF xF x0 x1

VM

x 0000 :
R2 user cade
E.. 6
xloo VSer da?l'a, User
w2000 (M ek || (P
d (PTBR) : .
x3000: - oS
PT } data
x9000:
] : space
xFEFF: [

pTE 3‘*& Jo\'\\) tTLﬂ
\
[azor] Rt

R3 [xe000] (PTBR)
MDR [x1201 x8‘001 MAR (VMAR)
¥ ¥ valid
x8 x Al1[1 x| x2
9 x 311
TLB ke tof
x3 x7 |0]0 M&)

17

l\z‘ﬁfl‘ |°¢k€c'

— yop 0 PT¢ bocihim o B A

e

ADDR BUS

rcke)

uﬂw fa

,/l}@vuz 8 k;,w))f/l (,oaL‘

/Mm/[m? (:»\()Lru% J[q‘}ca a 4}!)(?0004»?_

hirdbd asfosns b 1ced PT 5 o+ x8000 +
RS [\u T a))reg} /4{(= xgdd“)

tamld £ FR=A.

Q. Assuming the TLB contents are as shown above when the instruction is executed, why does this

memory reference cause a TLB miss? Show the PTE content that the TLB-miss exception handler will
read to update the TLB.

The PTE €, yirTwel page k1 nl o0 the TLB. The address cehnat &T’LMH%A.

The PTE iw of xA0D] amd w [T xQ xO x17].

Q. The TLB-miss causes an instruction fetch from the OS code segment. Which virtual page is the OS
code in, according to the VM map above? Assume the first instruction in the OS code segment is the first
instruction of the TBL-miss handler. The jump to the TLB-miss handler loads what virtual address to the

PC? Looking at physical memory, from which physical address is the instruction fetched? What is the
instruction? Complete the TLB entry and the PTE above for this instruction fetch translation.

0S code wnin Page x9. The Piest ms rvcj';év; b of Wt?lm_p a»ref! x 4000, whid yonld) be faded &
the, Pe. The 911‘15\'“9 a)vess i x9000- The 0515’[("5}"“‘4 '5,?%(., LDR R), R3 x] . Me .%71;//{:;
B AR o o [x? x€ xO0 <17,

Q. The instruction, "LDR R1, R3, x1" is the first instruction of the TLB-miss handler. R3 is the Page Table
Base Register (PTBR), and is pointing to the virtual address of the current PT. What virtual address does
this instruction read from? Looking at physical memory, what is the base address of the PT? Fill in the TLB

entry and the PTE for this translation. What physical address is read from by this instruction? What content
is at that physical address?

TIV\Q v'\r‘k\,,& a)é\’tSS rc;m@} . 8001 . 74(T @ pzyn‘caﬂg J xAddg. l/mﬁi// P Xy maps
pA ph\,sicr& Frame xA. The embues ane [x8 x A x0 x1]. The quy:fu.() AJ)rCH fofchce) - xA0O1
the coio i th P S0 paga 1,

Q. The MDR is loaded by execution of that instruction, and then R1 is loaded, as shown above. The
content of R1 is a PTE that the TLB-miss handler needs to load into the TLB. Assume subsequent handler
instructions write R1 into the TLB as shown. The TLB-miss handler exits by restarting the instruction that
missed: The PC is set to x0022. Now that the TLB has been updated, will the instruction miss in the TLB

on instruction fetch? Why or why not? Will the instruction suffer a TLB miss for data access? Why or why
not?

The, wibucin feted will e Tounchalid g the TLB ety [0 0],
becu it i 450 o the TLE. The I ccemn will be unclih) fecwsoe the
TLB vvtw] [x3 x7 x0 x 01 Jar Aeon mﬂw) Ar’d%[-xl xd x0 x|]

S, Yhore word be & TLB wise A fme .

Q. Suppose the OS switches processes. Suppose the new process's PT is in virtual page xD and in

physical frame xE. Can the OS simply reload the PTBR's content to xD0O00 and continue? That is, if the

OS loads the PTBR using the instruction "ADD RS, R7, #0" where R7 contains xD000, will the next OS

instruction after that be fetched correctly? The next few instruction will presumably cause the OS to jump
to new process's code segment.

Becmps the 0S ‘wdraé onens PT wu W/ s OS maﬁz&?@, s
e camwe) o 6 codind surthy. The witl ke TLB misser, hit Hhe Jondlr
C/oﬂstihswymwe) Oﬂﬂuxﬁj E«J%.TLBf Jocked enlies.

Machine M has a split L1 cache and unified L2. Running program P, L1's miss rate is MR1 = 1/16
(combined) and L.2's miss rate is MR2 = 1/4. Loads and stores account for 1/3 of instructions executed. All
misses (loads, stores, and instruction fetches) cause CPU stalls. If both fetch and data access hit in L1,
instruction execution time is LL1's hit time. L1's fetch and data accesses run in parallel, but L2 processes
requests from both serially. The number of instructions executed is n, M's clock rate is CR, L1's hit time is
Ti, L2's is T2 and memory's access time is Tom.

Q. In total, how many memory accesses occur (fetches and data R/W)? State the result in
terms of the parameters given. Of these, how many hit in L1? How many miss L1?

N wle = w }ejrd?\es % w 10/sT "/'*'/33 W Acle(fp =K
KK f{b < Sy k% =Sk

Q. If all miss penalties were 0, what would be the total execution time? How many clock cycles?

7; T;C'K S c»\c'u fe w{}v/s

y‘Tn 'CK = —k‘},\l u\(.ﬁg;

Q. In total, many memory accesses (fetches and data R/W) miss in L2? How much main memory
access stall time results? How many stall cycles?

3 <]<AL L) Mi{g&;) (’/L)) =)&Mm W\ LQ\>7KY’) = 87L4“ _i;mtf.
\%’Z’ZJT\;\ “CR 44 016\6

Q. For an L1 miss that hits in L2, how much stall time is attributable to the L2 access? How many
cycles?

\\'Mkw&x‘%"‘Li Lﬁ,‘)’: T] &R stall c'cfcltg

d»Sl' eyt u][/}r)\

Q. What is P's total running time? How many cycles? What is M's average CPI?

TAQ Tone = (0 ik) (T, L1 bt tie) MR, (G-MR) (T, 12 kit fime)

‘rTM) L i Pew“ﬂ\,

§§

n (T 06T, ('44)('4)/&*.%) _op
M\cles = 0\\.) LeR

cos = LoPR - (T+ % T + (T) e

Wiss L
Aé\c

er?

mw\

Qw

T W<

1l

1

\ m> “ms;

(‘“““\ (T J«T)

t\%@f [T+ Gy

Trr 41 T,
g pwﬁf;

Q. Suppose memory access time does not improve while processor improvements double the clock
rate. Assume L1 and L2 access times are also halved. Show an expression for the new CPI in
terms of the old clock rate. What effect does this have on average CPI1?

CPT,, = <1;1+ %t{(%)* ﬁ(;&* T”‘)) (2-CR)

- ‘ s TRy k CPT
:(T, + %y b+){Lf (Tz * D\T\Q) (r a0es Tn Ll)
Mlééf CPL wore

Q. Show the speed-up of the new processor relative to the unimproved version.

&S = M/T = G, (72t LT FHy To v 2 (Tt Tw) R ((/ee)
" Cm:"‘“’)/ahw\) [T PV To t (Tz*ﬂ;h)]cg (/Z CR)

—

Q. Assuming T2 =10 T1 and T = 10 T2, what qualitatively is the effect of the improvement?
What does Amdahl's Law suggest in regard to which aspect of performance should be
improved? What if CR keeps doubling every two years?

T = 100 T,

)f _ jr,r*’/w (16T) + Zy(1oT, + 100 T)) 2) = &/,1&%4 t %

Tt Yy (bT) + fy(oT, t20T) + 3 + 219,

- </+ :{ivz))‘7\
The Mwoh(sPeeé i r(,z)uu;w th vﬁu}uj
CR &N) cache qmc\ z%uu}uz amd CR ,w?}mh\m& bwprves hoe, tA
W - ﬂ{i/’ e spead o’omwvm] f_a?oz}nml@, el - Ty > ,ﬁm

J{N 35/:+/K LA so Sh—>d =t 3 ;;am)ﬂuj’)

Neo) L. Lorp 02, M&MM F‘j"”ﬂm@z Horw CR wrwwj' b ok e
o

Q. Comment very briefly (~5 words each) on the performance tradeoffs of each cache feature.

larger cache blocks pro: better at exploiting spatial locality, efficient pipelined transfer

con: more collisions, block transfer overhead (latency)

more cache levels ,
pro: lower overall miss penalty
con: complexity (area, energy, design)

more associativity . -
pro: lower miss rate, fewer collisions
con: complexity, LRU algorithms, not SRAM

virtual tagging pro: faster hit time

con: synonyms, aliases ===> complexity

larger total cache size w/ larger blocks pro: better exploitation of spatial locality
con: block transfer overhead, area

larger total cache size w/ smaller blocks pro: less collisions, less transfer latency

con: less efficient transfers, area

write buffering w/ a searchable buffer

pro: no stalls for writes
con: complexity

write-back pro: less memory traffic
con: LRU overhead, memory coherence

larger pages pro: more efficient page transfers, better TLB coverage, more spatial locality
ger pag con: more latency, more internal fragmentation

PID fields in caches and TLBs pro: no flushing, less misses, less latency for process start

con: lower hit rate, complexity

