
                                                         Mid-term 3, 2013.

NAME  ______________________________________________

READ THIS

The purpose of exam questions is to gauge the degree to which you have absorbed the material covered. Be aware of each 
question's goal: try to demonstrate (any) relevant knowledge.  Explain your thinking. You may insert comments and 
explanations that are off the topic. Some questions likely have errors. Comment on such difficulties: saying something 
like, "This question is stupid," is a good start. Select your questions: do the easier first; come back to the harder; do parts 
of a question. Partial and extra credit will be given liberally. Obviously, longer and harder problems get proportionally 
more credit.

Notation: "#" decimal number, "x" hex number; any other number is decimal.) 

A user process runs on this LC3 system:

--- Virtual Memory (VM) with a TLB 

--- 16-bit virtual and physical addresses, word addressable

--- 16-bit data words and instructions

--- 4k word pages and frames: x1000 words per page

The process's C code and assembly code is at right. The data segment 

includes a one-thousand word array, A. (Recall that ".BLKW 1000" is 

equivalent to 1,000 lines of ".FILL x0".) The VM map is shown 

below. Register values are shown just before the STR instruction 

executes.

Execution proceeds as follows:

--- Preamble: GDP <=== x5000;  jump to "main". 

--- main: R1 <=== #99

--- main: R2 <=== #6666

--- main: R3 <=== address of array A == (GDP + 2)

--- main: R3 <== R3 + R2 == (address of A[#6666])

------- C code -----------------------
int A[1000];
int main(void) {
    A[6666] = 99;
    return( 0 );
}

------ assembly code: --------------
.DATA SEGMENT
  const_a:  .FILL #99        ;-- off = 0
  const_b:  .FILL #6666    ;-- off = 1
  A:            .BLKW #1000 ;-- off = 2
  const_c:  .FILL x0           ;-- off = 1002

.CODE SEGMENT
    main:
             LDR R1,  GDP,  #0
             LDR R2,  GDP,  #1
             ADD R3,  GDP,  #2
             ADD R3,  R3,  R2
             STR  R1,  R3,    #0
             ...

16-bit Page Table Entry: [ F#, (other), M, P ]

--- F#, 4-bit frame number

         other PTE bits:

         --- V (1: valid)

         --- A (1: accessed)
         --- D (1: dirty/modified)

         --- L (1: locked in memory)

         --- C (1: cache-able)

         --- W (1: write permission)

         --- U (1: user mode permission)

         --- PID, 3-bit process ID

--- M (1: mapped, i.e., allocated)
--- P  (1: page present in memory)

If P=0, the upper 8 bits are a disk page 

number.

NOTE: includes some corrections to questions.



Q. Assume the user's segments are as follows:
--- code: 3k instructions
--- data: 1003 words
--- stack: 1k words

The system does not allocate pages that would 
be empty. In the page table at right, fill in the M 
bit, (0: not-mapped, 1: mapped).
Only the user's portion of the PT is shown; the 
OS portion is irrelevant. Explain each non-zero 
entry.

Q. No other process has evicted any of the process's TLB entries. The TLB is fully-associate. Given 
your PT entries above, fill in the TLB above. When the STR instruction executes, will there be a TLB 
miss? Why or why not?

Q. The TLB-miss exception handler will send a "SIGSEG" signal to a process that tries to reference an 
un-mapped page. This will cause the process to abort, issuing the error, "segmentation fault." Why will 
the process above be aborted?

Q. All the user's pages have been accessed and are in memory. In the PT above, for each mapped 
page, put in a frame number. Choose any physical frame that is available. Physical frames xF and x0 
are reserved for OS use.



Q. As described above, the process forks a child, and the OS uses "lazy" forking. Show the child's 
initial PT below. The child's PID is 0010 (x2), the parent's is 0001 (x1).

Continuing with the above example, the process "forks" a child process by duplicating itself: all memory pages are 

copied, and a new PT is allocated to the child. For instance, suppose the above processes code included,

    proc = fork();
    if (proc == 0 ) { exec( "foo" ); }

    else                 { wait( proc ); }

The parent's code pages are copied to the child, and both child and parent execute the same code after the fork(), 

except the OS gives the child a return value of 0 for fork(), while the parent gets the child's PID. The child here 

then overwrites its code segment with code from file "foo" and executes that instead. 

However, to save time, the OS can create the child process without allocating and copying: it copies the parent's 

PT to the child process. This is called "lazy" forking. If and when a page is written by the child, then the OS copies 

the page and updates the child's PT. For instance, exec() here would cause the code page to be copied, and then 

overwritten. The OS detects the need to copy by initializing all child PT entries w/ W = 0. The exception caused 

by attempting to write will allow the OS to do the lazy copying.

Q. Assume the TLB is as you showed in the above questions. The child does 'exec( "foo" )'. Show the 
TLB content just after exec() completes. Pick any available frame to use as the frame for the copied 
page. Assuming no other pages are in memory other than shown in the TLB, would the OS choose a 
frame for this copy that would cause a page fault (either to write back, or later read in)? Why or why not?



x0000:
  ...
x1000:
   ...
x2000:    <data area>
   ...
x3000:
   ...
x4022:   LDR R0, R2, x5
   ...

x8000:   LDR R1, R3, x1

   ...
xA000:    x0 x4 x0 x1
xA001:    x1 x2 x0 x1
xA002:    x2 x2 xA x6
xA003:
xA004:
xA005:
xA006:
xA007:
xA008:    x8 ____  x0 x1
xA009:    x9 ____  x0 x1
xA00A:
xA00B:
xA00C:
xA00D:
xA00E:
xA00F:    xF xF x0 x1

 
xF000:
   ...

 x8  x      1 1
 x9  x      1 1
 x0  x4    0 1
 x3  x7    0 0

x8000

x1201

x1201 x8001

The processor fetches a user program instruction and tries to execute it, 

PC = x0022. The VM map is shown at right, physical memory is shown 

below. The PT is in virtual page x8, which is mapped to physical frame 

xA. Note, for clarity's sake,  PT entries include page numbers.

Q. What is the instruction's virtual page number? What is 
the physical address of its PTE? To which physical frame is 
that page mapped? What is the instruction's physical 
memory location? What is the instruction?

Q. The instruction at x4022 is making a memory reference to 
address R2 + x5. The content of R2 is shown at right. What virtual 
address is being referenced? What segment is that reference to? 
What does physical address does that virtual address map to?



Q. Assuming the TLB contents are as shown above when the instruction is executed, why does this 
memory reference cause a TLB miss? Show the PTE content that the TLB-miss exception handler will 
read to update the TLB.

Q. The TLB-miss causes an instruction fetch from the OS code segment. Which virtual page is the OS 
code in, according to the VM map above? Assume the first instruction in the OS code segment is the first 
instruction of the TBL-miss handler. The jump to the TLB-miss handler loads what virtual address to the 
PC? Looking at physical memory, from which physical address is the instruction fetched? What is the 
instruction? Complete the TLB entry and the PTE above for this instruction fetch translation.

Q. The instruction, "LDR R1, R3, x1" is the first instruction of the TLB-miss handler. R3 is the Page Table 
Base Register (PTBR), and is pointing to the virtual address of the current PT. What virtual address does 
this instruction read from? Looking at physical memory, what is the base address of the PT? Fill in the TLB 
entry and the PTE for this translation. What physical address is read from by this instruction? What content 
is at that physical address? 

Q. The MDR is loaded by execution of that instruction, and then R1 is loaded, as shown above. The 
content of R1 is a PTE that the TLB-miss handler needs to load into the TLB. Assume subsequent handler 
instructions write R1 into the TLB as shown. The TLB-miss handler exits by restarting the instruction that 
missed: The PC is set to x0022. Now that the TLB has been updated, will the instruction miss in the TLB 
on instruction fetch? Why or why not? Will the instruction suffer a TLB miss for data access? Why or why 
not?

Q. Suppose the OS switches processes. Suppose the new process's PT is in virtual page xD and in 
physical frame xE. Can the OS simply reload the PTBR's content to xD000 and continue? That is, if the 
OS loads the PTBR using the instruction "ADD R3, R7, #0" where R7 contains xD000, will the next OS 
instruction after that be fetched correctly? The next few instruction will presumably cause the OS to jump 
to new process's code segment.



Machine M has a split L1 cache and unified L2. Running program P, L1's miss rate is MR1 = 1/16 

(combined) and L2's miss rate is MR2 = 1/4. Loads and stores account for 1/3 of instructions executed. All 

misses (loads, stores, and instruction fetches) cause CPU stalls. If both fetch and data access hit in L1, 

instruction execution time is L1's hit time. L1's fetch and data accesses run in parallel, but L2 processes 

requests from both serially. The number of instructions executed is n, M's clock rate is CR, L1's hit time is 

T1, L2's is T2 and memory's access time is Tm. 

Q. In total, how many memory accesses occur (fetches and data R/W)? State the result in 
terms of the parameters given. Of these, how many hit in L1? How many miss L1?

Q. If all miss penalties were 0, what would be the total execution time? How many clock cycles?

Q. In total, many memory accesses (fetches and data R/W) miss in L2? How much main memory 
access stall time results? How many stall cycles?

Q. For an L1 miss that hits in L2, how much stall time is attributable to the L2 access? How many 
cycles?

Q. What is P's total running time? How many cycles? What is M's average CPI?





Q. Suppose memory access time does not improve while processor improvements double the clock 
rate. Assume L1 and L2 access times are also halved. Show an expression for the new CPI in 
terms of the old clock rate. What effect does this have on average CPI?

Q. Show the speed-up of the new processor relative to the unimproved version.

Q. Assuming T2 = 10 T1 and Tm = 10 T2, what qualitatively is the effect of the improvement? 
What does Amdahl's Law suggest in regard to which aspect of performance should be 
improved? What if CR keeps doubling every two years?



Q. Comment very briefly (~5 words each) on the performance tradeoffs of each cache feature.

larger cache blocks

more cache levels

more associativity

virtual tagging

larger total cache size w/ larger blocks

larger total cache size w/ smaller blocks

write buffering w/ a searchable buffer

write-back

larger pages

PID fields in caches and TLBs

pro: better at exploiting spatial locality, efficient pipelined transfer
con: more collisions, block transfer overhead (latency)

pro: lower overall miss penalty
con: complexity (area, energy, design)

pro: lower miss rate, fewer collisions
con: complexity, LRU algorithms, not SRAM

pro: faster hit time
con: synonyms, aliases ===> complexity

pro: better exploitation of spatial locality
con: block transfer overhead, area

pro: less collisions, less transfer latency
con: less efficient transfers, area

pro: no stalls for writes
con: complexity

pro: less memory traffic
con: LRU overhead, memory coherence

pro: more efficient page transfers, better TLB coverage, more spatial locality
con: more latency, more internal fragmentation

pro: no flushing, less misses, less latency for process start
con: lower hit rate, complexity




