Consider an 128 kB (total data size), four-way set-associative cache with 16 B blocks and LRU block replacement. The
cache is physically tagged and indexed. Physical memory is 32MB, byte-addressable, and words are 4 bytes each. Virtual
addresses are 32 bits, and pages are 16kB.

Q. How many bits is a physical memory address?

Ot YC‘JH o &vaonord) a Athharee AV "‘Jhﬂ- % 4 C)Jj& Mem (88,1’01’4‘)

Shjed can be ralowncad by o wonoy_ adbesr of any B-abedle 28
b, the Th g W el Tl 163 s et

000 |l Bo || oo

CAM m&»a l\k&mw\c& d(xyzl’s o 28 boww)ml'ﬂL ¥ w01 | B
2.8~ addreneld M) we aod A L ma«}o\m, jm oto | B,]| o1
kB~ s)dressable , W e %’WWA) i, W\pjmu'lg /k L?jw, ':210 ZZ 10

“the gﬂm@mmjd’,‘,ﬁﬂ‘f 101 E
nequina. 3bE ddesses Wk o byfe- e, b 110 LB 11
m\Q’a 2~-bd acuvesses %\'} W 25~a<\§rcsgdo\g,. 111 | B9
O wn, “Y\UW\WA W DA Me J«\j}@@ééreg%: e MOL a
Dot s a bjte: 3aM = 2k k= 2°2°" + 45 bt
addvesses.

Q. What is the physical address of the last word of physical memory? What is the biggest (highest)
possible virtual address that can be referenced?

o wobde Sk it i o) . e B ot Ak ek
0ddness VDMD-'}D\Q ywx‘l’ (vM\ Jr\a‘fes, 7C6L k=2 55}6 o"jejsj %ﬂz i
Lo Q,&fess E'\‘l’s ne QXQ O) m A kj{'ﬁ—d}BVeSSlMQ MLQ\IIJM

b son gl abive, 0 48 by, he oo 2 s 0 [

bits o O : (bmégg stedi ok @dress 000, WVM at 100 o0 |6, | Wo

For & 32MB bfrewbéressdﬁg om s, the Lot wd sk ::1 | -

bfe address (4 A1 A AN AL B 100). vor [[Bs

o (1 f ¥ ¥ ¥ ¥ C) Y 4o B
T)']{, bijje'il' 3Z-L'\Jr V.tY_\-\A& &%(&SS 73 XFFFFF;FF . e = —

Note thed & 48 wnd cadd)x”(ﬂ\ouw a{ M A 31~HMM"/‘«'

Oy st bk [b b by by by 0./ b, e b aifd
bk, e e howe [858,8, 8,7 4 4 32-b3 numben v/ by of By thy wedk-
st B8 (s dan) o [8:8, 6, BT, in whidd case by 4 8, 4
e etk b (g eadan) . the T3 ddnines. whidh (of com b
soitded vio. o, k4, “W”‘W in. sone. tnbitidfians)

Q. What is the physical address of the middle word of memory? Pick a word such that half
(minus 1) of the words are at smaller addresses and half are at bigger addresses. NB--The
smallest address has all zero bits, the biggest has all ones.

Ex ft‘l\"“”& ™t oty = (El) 3AMB = 5 2=, the fmf} % vz memey 0. % JL
M 10000000 Thisgh xOFFFFFF, the scand /o i 41000000 - sTHFEFFY,

WMew

xQFFHESCT T
_l_l'\(Qast wad im the W\a,\\e,v ﬁbmses % S+MJVS d L‘J% g;;;‘gigr_/ Word
OFeFrrFF '
YOTFTEre. Jow 2 Wik rfg &dJress me bath 0, 1006600) _wid
(1100) rosset] puond

=) 10000
c\\ex BMM& 10000903

sa

Q. Each cache block has how many words? How many words of physical memory? How many blocks?
How many blocks of virtual memory? How many blocks per page? How many pages?

16B uas@f?) = wady/|l) .

25 320 _
W\exnory ia 3B (Bedy = 2 fpr =22 2T Munds

2 M words (ﬁ%‘é& = A M blocks .

278 virtud m'v«\tﬂﬁ (thylig) = 22 =225 M Llocks,

2—52 M loloclts (P‘\‘&/1k bletkf\ = 25’«4//2 Pﬂg;.s.

Q. What is the address of the first cache block of physical memory? What is the address of the last
cache block of memory? What are the addresses of the low words of each block. What are the

addresses of the high words of each block?

Blocks ane 168, so, fuad 4 eres ks 0 O af bloeh bndinie

1% Dok b ok x0000000 (255 addvew) Tt i of £1FFFFFO.

TThe Qo wed & e 19 bk F x0008000.

Low wnd

NEFFFEFFO
«TFFFLEA
«1FFFFF2
<1FFFFF3

x X x X
S s N
nMNNNn
“hhh e
7M™
M
qmoen

T

-

}S Ll

}\ high

low
wor

Hoék

Werd

«1FFELE

A e fast Mook i F xTFFFFFO
Hoh words aie, gF x000000C and YIFFFFFC.

[ow
wor
20000490 3
!
2000084 2 gt
. . L\oélﬂ
x000030 ¢
£000030D
x000030E
00003 0F \ hizl.
20000310 Word
SN A h
2 LlO('(

Suppose the machine's ISA includes a load-byte instruction, LB. LB loads one byte from memory into the low byte of the
designated register. The other bytes of the register are unaffected. LB is implemented by fetching the word containing the
byte, and then the desired byte is written into the low-byte of the destination register. See diagram below.

IR
of

- =

Rey

—— |

L.

Rey Gile ﬂ
Rgc:;’(ode| e, “
et .
ul’le; ggtf

TMQ

Bl Bg
T

MDR

Brg. B Bg
1) '

From

\ |

Catclnc

mar[_

L e

The low-order bits of the address select which byte gets written from the MDR. Assume the high-order bits of the
instruction register, IR, contain the opcode and the register number. The register field is sent to both the Read1-Reg and
Write-Reg select inputs (the same register is read and written). TMPO and TMP1 are temporary registers in the execution
datapath for the LB instruction. Since there is a cache, the "MDR" shown here gets its data from the cache, not directly
from the physical memory. The "MAR" contains the address, after translation, that is sent to the cache.

Q. The CPU executes this instruction, LB $3, 2($5). Register $5 contains xA123456C. The page table
entry with the following index (recall, the PT is indexed by page number),

1010 0001 0010 0011 01 (binary)
contains this (physical memory) frame number,
11111 1111 00 (binary)
Which byte of which physical word is being accessed by the LB instruction; that is, what is the word's

physical address and which byte of that word is referenced? What is the physical address of the cache
block containing the requested byte? Which word within the cache block is referenced?

TeamsPalion W WM T 7‘%5’“‘& addrn s, olme thu Wﬂﬁ)

32- bt VMAR Page® ‘I (’Age o et Iy ;;:tjf"‘jﬁﬂ' M\ﬁfkgj W

\ | \\“”L/—w e 1Y bils.
me%l"pagz ‘%“‘* f:% WU :;u.;;gle}» @ b}ZL
.N)bx A)\53}3'1\’ MAR m A W

—> CRAMENR o—rodQ— —
“Ma} w)ﬂu P num,Lers 32-14=1% t%rxj
frame umbers ma A5-1Y < 11 fok

PT

The W&K (mdan) thoe i xA1L 72 MM ‘“3 (Oﬂbinar"g_)""'('}"'J’”f-L 8 LATS
Regls‘l'ef ¥7 coduins ><<A\13 1 5¢c)

or |xA1L3 (01003wx5” EC | he wppn 1t Lk, wht23 o),

ot PT imdex menlioned above . goj this IA,WYM A? /w/r.otku; thse w/t}{(
11-51‘]’)(UW\Q& amd Wc«j."m&m& Tﬁ(/uu,r\a,wwf\é /'-/[,JM,ZL JH-AJ-T (OO)L‘,“XFGC:

x1 FF (60) %(003 5 4C | whid iy the 250t

biner

Poasicd a8drece “H*'\Tf\ms\du},a s The baX Y At e (1100) wd becanan the, St
2 kds ma (00)) tha w 4 wnd-alied addo. Tthe offset added % $5 4 2, ki)
o the bafe 4t o5 the wd of Wdress (1FFOSEC, o hyfe 8, of et umd
o rolounsd. Cade block, benbonisn end i ©000);, . Thic blodké address

x1F£0540. The UW\}))}‘ WO@\W e B(o(J/L W 11/ op Wa’ég a{t&d HM,LL (dac wosoré).

) wllqu n 32 L_{j})

bin ”("

Q. In the MAR, which address bits specify which byte is referenced within the word? Which bits
specify the referenced word within the block? The block within a page? Show as "MAR[k:i]", k > i.
Assuming the address before translation is held in a "VMAR" register, do the same for the virtual

address bits.

The 96\;5 2 bis m‘ﬁﬂ\x k‘j+€ oﬁﬂ’;\' M}t‘ﬂ\m kwb’téj B da. Wu. e Y bths £ L\ad&)

the naoit 2 bibs one the wed dfsek wj\w ¢ Block, W& Ty o lU&B/pW_s}
imd 188/block | o (\6*‘%&%><1%k) -1k bk within & pege Jo the net g
bH’S m% uOC,\ %&Sd V\):cH\l;h Q@ f"’*‘j% h\OQ\(XS{ TA/;;M\ t‘jﬁﬂlm %0'09\, Cb’k/j&:tdi
d\& |19-bit luﬂ'e c%od" withow page A //wmc:
1 10 2 2 " 5
MAR frame ¥ I'lblotu‘ ':wab?is&? MAR[1:e] | ‘0‘_51'{ ﬂ%ﬁf within w0
MARD3:A]) The wod withon 4 block |
MARLABHT) block within a page (o {mee\.

MAR[?JH‘}]) M:’sw«k w‘(mm;a M M‘Mlﬁn

1% 10 2 A - o'ls
Vv MAR Page ¥ Lo Twp o] viaRpie], bt et withi wd.

VMARD3R] , The wod willon 4 block |
VMARLB’"‘]; Llock \A'\J"kin a Pdap_

VMAR[31:14] il mom o W numbon

Q. How many cache data blocks does the cache contain, in total? Recall that a cache line contains a data block
plus tag bits and any other per-block bits, such as a valid bit and LRU bits. Recalling that the cache has four
ways (4-way associativity), how many cache lines in each of its 4 DM cache-line memories?

Tt codw A pisp in 129 & B (LlodyuB) - %%lo blocks = (;L"zs%)tlocﬁts.
&
8 k. blocks C‘T,;qs\ = l/« L\OLk‘/hMAé : eaak Mo‘o!(. m & DM CMJLQ‘/&MK M(,MW‘ (A“ma”)
comeaponds witl, me cache. Lime
T 2kt o way i€ RdLies por cach o the o DM eudle-fow memticr .

Way 0 Way 4 w Way 3
- i l[\ . Lins.

%R i 9.k Ak Tag+ block /“TA&"I'” i W
J’ L L L 733 B]’I’S flu)’ o’\'lner A;f;’

Q. How many address bits are required to index into a single DM cache-line memory? Which bits of the MAR
should be used to address Way-0's cache-line memory? What about indexing for Way-1, Way-2, Way-3?

Ak Loves > lul.}«es > 11-bit "‘\JUX ' lAJC CAm 1oth W 11 L.vj? n ijL MAR
fo uon o indan W, b we wail § nat ovelep cache Mlecks: i, wwnid £
use the, BRock % (aNaliwe o W\Q’Wf\ﬁ) block% W |e%| | WJ the A5 bs IK
“hae blodk nurber swmés T/g\l MAM& b Tiream WEQ‘AM& ,U-OJ(;, Sa,

11 2 2

the MAR l“‘?"‘“*d” iwwﬁwﬁim&

SQJ N\AP\D":'*] e Ww.) 'fm bew? kb the %bpfm/-,&m mMem suss.
The same 11 MJMAR[I‘“I]} e wed b oimdex ald frwv. V\Jaas MMwaMIwM—QA}

Q. How many bits are need per line for tag bits? Which bits of the MAR are used as tag bits?
Specify in "MAR[]" form. If the cache were virtually tagged, how many tag bits per line?

Physicd address oo 25 bits; o l“‘t""l() Vi addresses e 32 s, fapit w

10 | 1 | 2 2 177 11 2 2
Tag ;im‘w :Wﬁ;e‘& Tag ':w)w 'nw%iw&
10-bit Teg in o MART2:05] ad il g v VT 4k

Q. Show the bit-field layout of a cache line. Assume 1 valid (v) bit, 2 LRU bits, and 3 cache-coherency (cc)
bits per line. How many bits per cache line? Bytes? How many bytes per each way's cache-line memory?
What is the cache's non-data storage overhead, as a fraction of data storage? In total, how many bytes of
the entire cache are non-data overhead?

10 12, 32 32 32 1 2 3
TA-J- ‘\)M’Ag |I \A“B ‘Ha\oYB‘l : W“BO ‘l LR\LI‘ ce
1 2 | 1 v | i

Coche Do szw\oo‘r o,

Tl % bds o 10+u(32)+ ¢ = 14y Lih/,@m_/ MJ\ w \¢ 6.

.féf/w e QA Lwes —3’1"('3 B) = 2‘0(303 = 34 RB P warg - |

OW""\{AA 'y ZB/%B = ’/8 Total ca.oow\ AJ&. S':/f . (lfwhjs)(‘be'z/“"‘D"'I&g,{eB
Tt evehesd - (/42) ARG = 15k0.

Q. Suppose the cache is virtually tagged and virtually indexed. That is, both the tag and the DM cache-
line memory index come directly from the virtual address before translation. Below is shown two copies
of the address register (VMAR) that holds the memory address being referenced in instruction fetch or
data access before virtual-to-physical address translation. Show the bit-layout for the VMAR (1) as it

pertains to cache tag, cache index, word number, and byte number, and (2) as the same bits pertain to

page number and page offset. Show the number of bits used for each field. Show the layout of the
MAR also.

7 L1 Cache
A Z z Wa'}o W‘ﬂ] wd‘jz Wﬂ3
(1) VMAR TAG ’ '\NAW \N& B);x -EJ b‘}"'&q bA&Tn.j Dk Tagy Dk
]) | |
ST
I'V\AQL oo ® oolo .lo. .;o
f ‘ | !
I I I A
Ta,a, =

I

I

1Pas

18 /4
(2) VMAR | Paex | offet

10
6311 e, e, 01 e, 0o

ne L ¥
Pa.ge % ' Frame Wy Wy TW, 1w (/l

oo TS

o L > cPu

Frame® "I of {set MAR — Ts L%
11 Iy

Q. The virtual pages 0 and 3 map to the same physical frame, frame 5. The diagram above indicates a block
with virtual tag 0 is in L1. There is also a block in L1 with virtual tag 1. Explain why this could be an example
of the synonym problem. Suppose both blocks are dirty.

Q. In the diagram of a 2-way cache shown below, draw the wire connections for DM addressing
(indexing), tag comparison and hit detection, and MUX controls for a CPU memory read access.
Show the bit-field layout of the MAR and the two DM cache CMDRs (Cache Memory Data
Registers). Show the sizes of address, data, and control signals in bits.

MAR

’0\3.. Lm)u(w¥ | o Je— Prom CPU

DM, DMy

<-—__.’
addvess address
: (index) Cindex) .
¢ [}
‘l Lladt blach
cMDR | Tao (Vi 10 I UET I
1 (V] .
encoger 1 0 L\n‘l’

To CPU

S

MDR To CPU

bitS: 31 ... 25l 20 .- 15 e 10 00 F e
Below is shown a 5-stage pipeline architecture (Fetch, Decode, 6 5 5 5 5 6
Execute, Memory, and Write-back). Stage registers are the narrow Rformat | _oP=0 | rs | i | rd | sa | funct |
vertical rectangles. At right are instruction formats (high-order bit at Jusl - Seeond el Shilt - Funcon
the left). Control signals are decoded and then passed through a Register Register
MUX and written to a pipeline stage register. The control signal 6 5 5 16
destinations are shown as select inputs to datapath MUXs, write- I-format o [=]] ‘"‘"?
enable signals, and ALU operation control. Branches are taken when st Second fmmediate
the ALU result is O (ALU.ZerO == 1) Register Register
2
J-format | op | target
Instruction Decoder. Jump Target Address
A ROM containing an 8-element word for each opcode. -\. .
For simplicity, assume 2-bit opcodes: BR==11, LW=10, I.V\s-\.f\lC von De CQAQ &b M
SW=01, ALU operations=00.) 10 01 00 N ExtOp
o 0 1 0 | ALUSIC
ExtOp: (use the opcode for this field) I _J__ ALUO
ALUsrec select: 0 = ReadData2, 1 = immediate 3 Y L X 2
ALUOPp select: 3 = Subtract, 4= Add X 0 X 1 —o-{ RegDil
RegDst select: 0 =RT, 1=RD 0 0 1 0 |——s| MemWi
MemWr: 0= Read, 1 = Write /' O O O | Branch
Branch: instruction is a branch Dpco Be,
MemtoReg select: 0 = ReadData, 1= ALUresult X 1 X 0 ~{MemtoReg
RegWr: 0 =No write, 1= Write L 9 1 0 1 o] ReeWr
ADDRESS: " lo o1 00 '
FETCH DECODE Execute MEMORY WRITE
e
I:I. | W
" [NoP
: 5
i P =
J OPCODE 52 _g —> .
b E
: IF1D =
Add —| P\\\
s ~ am A
(snim .
[NOP| w2/~
s '
| Pt ACITEES 5 Egsart Read
EIRT | reng datai |
e - o e ALU
=] 1) ALY Read o
Instr. . %“E:Er daa 2 T | regt . Atdress o e el :,1
Mem ‘ 1 ' | e @ X @ memory @ u
gata | |
- i wirte -I"Q{_;
ingtnuction o | \ e i
[15-0] " | smgn 5
A 'Ir:ntter'l:lI &
| |
e R\ -~
u)
]
e RD CJ
|| : L L

Q. Identify which pipeline register supplies each datapath control signal. The pipeline registers are numbered
1-4. For example, ALUOp in Execute stage comes from pipeline register 2

ALUsrc i.n EXECUTE comes from pi.pe regi‘ster 2 Branch in MEMORY comes from pipe register 3
ALUOp m EXECUTE comes from pipe reg.1ster 2. MemtoReg in WRITE-BACK comes from pipe register __4
RegDst in EXECUTE comes from pipe register _ 2, RegWr in DECODE comes from pipe register __4

MemWr in MEMORY comes from pipe register _3

Q. Fill in the control signal values in the instruction decoder ROM. A branch is taken if two register values
are equal. Branch is an I-format instruction. LW uses RT as its destination register field. If a branch were
taken, how many NOPs would be generated by the branch hazard detection unit? Which pipeline registers
have their instructions nullified (instruction made into a NOP, or control signals set as a NOP)?

3 NOPs ane imjeded o pipe nogisfo 4,300 3 o o Thon brondh
Whon the BR indaudlisn - v MEMORY.

Q. The instruction opcode is decoded to produce the "Branch" signal shown in the memory stage. This
decoding is done in the Decode stage. Is there any reason this decoding couldn't be done in the Memory
stage? Would decoding in the Memory stage increase the pipeline's clock rate? Explain.

~ W alemg @ EOWJMA' Brand, cnd)
ﬂssmwaj‘/e‘* opode. o Camad alemg i the ExTOp fulld, iy Bren
ha done G Mm(fv& d‘p‘?ﬁ,, TL\Q O{.Q.DW}M\ d&ﬂﬂy IAMVJ’ W'r-]L' % MQ IMW Ma’ﬂ’
Gnd WS (an QM«S&& wdgx r)\ai‘ ob-omj S, dLmlwbq wridd nol messe, MEM()RY Ala?_
Consider an instruction mix of 50% ALU, 20% loads, 5% stores, and 25% branch instructions. What would the
average CPI be for this CPU? Assume load-use and branch-delay slots cannot be filled by the compiler; 50% of
loads incur a load-use bubble; 20% of branches are taken. Ignore memory access considerations; that is,

assume a split L1 cache and that every instruction fetch and every data memory access hits in L1. All data
forwarding paths are implemented so that stores and ALU instructions do not stall.

A BR indfrudion thet in tokon extfin the pieline abony with 3 hubblen:
CPI o thon = (173 . Mot -tehon BRs hoe CPTgp irden = 1.
AW indfrudtion That AM o Jond-vae ,Q\agmd ey me NOP bl /wJ

N N D e I
msteudions fave CPT,, =1.

‘CTI:Q\&Q)J\“‘N otdhions
N

)
A L(i o BR., .,)+ (el fin BRurasen) 7 (ogdes f LWy Y (odes fn LW
+ Copda fa ALW) + (yde fr SW) |

no- ka}o.rJ)

(Ul&e’-'t’m BRU‘(%) = (NBR{J&M (msl'r\)[.('fm5> X CPIBQ_-(M
= N(7 BRXZ BRecken)* (4) = N (%) Vs) () = M/

(%MFBQM-T%) :(NBR»m‘f_T,qu > K CPIBR-?\J-TL)Q_QM
= N(7BRY7 BRogdken) (1) = N(Y) ()Y = /s

(“fdu fo LWM}MJ) - N(Z LW%Z L\")hay.r)) X CPILW*M)@(A = N(’/S)(l/z) (2) = /U/b‘

(_Cl(JQS %6] LWno-"l&}art)) = N(Z L\,\D(“Z Lw\no—ka)q,rlb X CPIL_\A)J\Q- l\ﬂ)M’é = N(Zg}(%_)(ﬂ = M/IO

(eda Jou ALW) = N(Z M) x (1) = N ()(1) = Ny
(yden for SW) = N(ZSWYx (1) = N (/o) (4) = N/go

= TpT - (Nl ou Vot Yo fio)]
a0 = ¥y

Q. A newer version of this CPU moves the BR condition evaluation, target address calculation, and branch
logic to the DECODE stage. Additional data fowarding is implemented, so long as it does not increase the
clock period. BR now incurs only a single bubble on taken branches. Suppose there is a LW-BR
dependency: a LW preceeds a BR and the BR uses LW's destination register as one of its two comparison
sources. In which stage would LW's data be available to forward to the BR instruction's equality
comparator? How many bubbles must hazard detection insert in this case?

1"

AN o«mmé\‘ Ab—mwué fire c)ih nasd '}/wm W\t/w\m,? umﬂ) £ /LMJM WRITE-BACK

o fust postible cportindy ki foond the dubi wnl) be i MEMORY offen he

MH&\JW%dMMLAQM WWCRMW%MWA
wold tndude, the J s W\fm\wa) the BR mpmzj% P, bromdh }’,\?% A%M\Amf

5o, R wut fl | dactda wiki]
’ ¥ o FW w.n\w. WRITE - .
Onneited Gk s ma"#exs Y re ITE-BACK © A huddler a0

Q. Suppose 1/5 of the BR instructions in the above job mix are dependent on an immediately preceeding
LW. This accounts for a potion of the total load-use hazards mentioned above. The remainder are due to
other dependent instructions following a LW. Out of N instructions, how many LW instructions have a
depedent BR instruction load-use hazard? How many LW instructions have a load-use hazard due to
some other dependent instruction?

Thow me N(75) totd LW mdeuckions . Thew o1z) Br i ,.,(ﬁ,,,,,/ wd Vs o
Whaa one depondeit on en guncfidly precceding LW s 4] () = Wao LW
Unsteudbions have & BR-fogd -t hogrd . the numbes) KW instrucking 1 amy higard

b NCEYA) = Nho . the wamber o LW instroctions with & fowd-sae hagoad wit Juo
o ammmbéwi&w PN&QAA'Né BR %w\,

(%) - (%e* Vio) = N (Vao)

Q. Given the assumptions in the preceeding questions, what is the speed-up of the new CPU versus the
original CPU?

Fﬂ d\(e CPU MM&JMM'QU"Q& #he %(,le,fm LW inmctrictions =

(ol o B+ (oyen o Bigg g) ¢ (ogdle for MWy)

]

(_N/IQ) cpl L -wo -hajard +(%O)C,PI Lw-m.l,,‘),w) * CN/1.0> CPT O’Mer—hzyar)
N (o 0+ Jol1+2) + oo (141))

V(%50) = CPTLw = Vo

(\

]

The wew QPIBRJA/(M\: (1+1)

(odo- 4o BRyy,) = (NBR.’(;}M (ms"'rui"\'ﬂ\5> X CPIgp them
= N(7 B8R BRokon) * (2) = N LAY))

)

o

(gl BRors) = (ot) * CPTagodttekon

= N7 BRY(T BRpgtdhen) (1) = N4 () (1)
(o fa ALW) = N(Z AO)x (1) = (%)) = N/s
(ol fin SW) = N(ZSW)x (1) = N (%) (1) = N/3o

n
=
a~

(Tt u\cQu- for new CPF “) = N(%30) + N/lo + Vg + AR/

TR (rearuriont) = NP - W{%)

= _ b
= CPlnw - é—

i

W - ol’\ a‘\

M& - T;rijm& _ (14N 01clt$’°"‘:j{“"‘0> ,/CR N Cﬁor‘ijm&
T,

i

Cl

(1A 01c.lcs - VIQW) VC,R N CPLyeu

(95)
=25/ = 1%
ot aboit 47 el

Q. Was the improvement in the new CPU's performance worth the cost?

Tvon thangh the parfamonce omprovenod i small whe addad coit ua m;MQq
Y\Gt%ma:‘tgm o(w;m Wi, M(J\I m-mgwm’/}aé. The ow?ﬂ nows eoid Jomed
Wwa, the d«mmmﬁ?ﬂu b the BR mwﬂfrb) 4 voul amall m\pwﬁk sl
50, Y, o wia wmﬁ[\ it .

