
Two load-store architecture machines, M1 and M2, have the following characteristics:

                      M1                         M2

                   ---------                   ----------
CR               4 GHz                      2 GHz

CPI-alu            2                           1                       ALU operations

CPI-br             5                            3                       Branches

CPI-mem        20                           7                       Loads and Stores

The CPIs are averaged over all instructions in each class. Given an execution trace of any program P, let a 
be the number of ALU operate instructions in P's trace. Let b be the number of branch instructions and m 

the number of memory access instructions in the trace. Assume a, b, and m are non-zero.

Q. Determine the characteristics of an execution trace in terms of a, b, and m, such that M2 out 
performs M1. What sort of a program might P be? That is, what kind of job would have these 
characteristics? Hint: use the basic processor performance equation and the speed-up formula 
of M1 versus M2 to find an expression relating a, b, and m.

Two machines, M1 and M2, implement the same ISA:

Machine        CPI-A      CPI-B       CPI-C       CR 

-----------       --------      --------      --------     -------

    M1                 1             2               8          2.0  GHz
    M2                 1             4               6          3.0  GHz

There are n instructions in trace T: 60% are class A, 30% are class B, and 10% are class C.

Q. What are the MIPS ratings for both machines for T? Recall MIPS = n / (time of execution) 
expressed in millions of instructions per second. What is the speed-up of M1 w.r.t. M2?

Mid-term Exam, 2012 spring, PART II



Q. Suppose we want to make the slower machine as fast as the faster machine, but we can only 
improve the execution time of one class of instruction. Find the minimum execution improvement 
necessary for one class of instruction. That is, for which machine and which class of instruction 
should we improve performance and by how much, such that the least improvement is needed? 
What is the new CPI for this class?

Q. Suppose we can augment the ISA with MMX instructions that can operate on multiple, short, 
operands in parallel 10 times faster than without the MMX instructions. What sort of instruction 
mix would result in a speed-up of 2 for M1? For M2? That is, given x% of instructions can be 
executed as MMX operations, find x that gives a speed-up of 2.

Q. Give an expression for each machine that sums up its performance relative to the reference 
machine. Show that the ratio of the summary measures of X and Y is a summary measure of the 
relative speed-ups of the two machines. Suppose W is particularly slow for b2. Would your 
comparison change if we used reference machine W2 which runs b2 four times faster?

 We wish to compare the performance of two machines, X, Y. We have 3 benchmark programs with data, 

b1, b2, b3. We have execution times for each benchmark on each machine and on a reference machine W: T-

x-1, T-x-2, T-x-3, T-y-1, T-y-2, T-y-3, T-w-1, T-w-2, T-w-3. 



We run program P on two different machines, a 1-core processor and an 8-core processor, with the 

following results. CPI_i is the average cycles per instruction for a single core on an i-core processor:

    CPI_1 = 3/2, CPI_8 = 2

The number of instructions executed per core on an i-core processor is n_i:

    n_1 = 20, n_8 = 3 (in Giga-instructions)

We can adjust the voltages and clock rates:
    CR = 4 GHz at v = 1 Volt, or CR = 1 GHz at v = 1/2 Volt

Power consumption is = (4)(v * v) CR (1/GHz) Joules/sec (Watts) per core.

(Recall, energy is measured in Joules.)

Q. Find the time to run P and the total energy consumed in all four cases: (1-core @ 4 GHz and 
1 GHz; 8-core @ 4 GHz and 1 GHz). Recall, energy = power * time. What is the maximum ratio 
of energy consumption to get the job done. What is the maximum speed-up of the fastest versus 
the slowest? Which configuration offers the best trade-off? Hint: use the basic processor 
performance equation to get the execution time.



A load-store machine M has a two-level cache heirarchy. On an L1 hit, instruction fetch completes in time 

for a non-memory instruction (not load/store) to be fetched and complete execution in one cycle. For a 

load/store instruction two requests are sent to L1 sequentially, one for fetch and one for data access. If both 
hit in L1, execution takes two cycles. If L1 misses, the first cycle detects the miss, and then 10 cycles are 

required to detect a hit or miss in L2. If L2 hits, then L1 completes the access in one more cycle. But if L2 

misses, memory access takes 200 cycles, then 10 cycles later L2 sends a ready signal to L1, and L1 then 

completes the access in one more cycle. The CPU stalls until all accesses are complete.

Q. Given clock rate CR how much time is required to execute a non-memory 
instruction that hits in L1? How much time to execute a memory instruction that 
hits in L1 for both fetch and data? What is the L1 hit time per access?

Q. How much time is required for a non-memory instruction to complete 
execution if it misses in L1 but hits in L2? If it misses in L2? Write each 
as a sum of individual components.

Q. What is the miss penalty for an access (instruction fetch or data) that misses in L1 and hits in 
L2 (aka, L2 hit time)? What is the miss penalty for an access to L2 that misses?

Q. Give an expression for average instruction execution time in terms of the quantities above 
and miss rates for L1 and L2.

Penalty time is the extra time we have to spend to access the next lower level. Every instruction has to hit L1. If we miss L1 

and hit in L2 we pay an extra 10+1 cycles. An L2 miss incurs that expense plus another 200+10 cycles.



We've just derived the cache performance equation. We can use it to deal with the LS instructions. Because there are two 

accesses per instruction, we multiply by 2.



Machine M has a split L1 cache and unified L2. Running program P, L1's miss rate is MR_1 = 1/8 

(combined) and L2's miss rate is MR_2 = 1/256. Loads and stores account for 1/3 of instructions executed. 

All misses (loads, stores, and instruction fetches) cause CPU stalls. If both fetch and data access hit in L1, 

instruction execution time is L1's hit time. L1's fetch and data accesses run in parallel, but L2 processes 

requests from both serially. The number of instructions executed is n, M's clock rate is CR, L1's hit time is 

T_1, L2's is T_2 and memory's access time is Tm. 

Q. In total, how many memory accesses occur (fetches and data R/W)? State the result in 
terms of the parameters given. Of these, how many hit in L1? How many miss L1?

Q. If all miss penalties are 0, what is the total execution time? How many clock cycles?

Q. In total, many memory accesses (fetches and data R/W) miss in L2? How much main memory 
access stall time results? How many stall cycles?

Q. For an L1 miss that hits in L2, how much stall time is attributable to the L2 access? How many 
cycles?

Q. What is P's total running time? How many cycles? What is M's average CPI?



Q. Suppose memory access time does not improve while processor improvements double the clock 
rate. Assume L1 and L2 access times are also halved. Show an expression for the new CPI in 
terms of the old clock rate. What effect does this have on average CPI?

Q. Show the speed-up of the new processor relative to the unimproved version.

Q. Assuming T_2 = 10 T_1 and T_m = 10 T_m, what qualitatively is the effect of the 
improvement? What does Amdahl's Law suggest in regard to which aspect of performance 
should be improved? What if CR keeps doubling every two years?



Q. In the address bit-field diagrams below, show the allocation of address into bit-fields for byte 
number within a word, word number within a cache block, and tag, showing the number of 
address bits in each bit-field as it applies to L1, L2, and virtual pages.

Machine M has 32-bit virtual and physical addresses, 32-bit words, and memory is byte addressable. Pages 

are 128 kB. L1 is a 512-kB direct mapped cache and L2 is a 8-MB 4-way set-associative cache. Cache 

blocks are 8 and 16 words for L1 and L2, respectively.

Q. Comment on the feasibility of using virtual indexing in this system. (Recall, virtual indexing 
indexes into the caches before address translation.) Is there a performance problem w.r.t. to the 
TLB in this system?

Because page# overlaps 2 index bits, 
physical indexing results in an L1 delay until 
after TLB translation is done. Virtual 
indexing solves this problem. In that case, if 
L1 is physically tagged, the entire frame# 
must be used for the tag as the 2 physical 
index bits are not the same as the virtual 
index bits, and a partial frame# would not 
uniquely identify which block was present. 
Virtual tagging works and L1 access is fast. 
L2 can be physically indexed and tagged.



Q. Comment very briefly on the performance tradeoffs of each cache feature.

1. larger cache blocks

2. more cache levels

3. more associativity

4. virtual tagging

5. larger total cache size w/ larger blocks

6. larger total cache size w/ smaller blocks

7. write buffering w/ a searchable buffer

8. write-back

9. no-allocate/write-through

10. larger pages

11. PID fields in caches and TLBs

12. word-level valid bits within cache blocks

13. valid bits in TLB entries

More spatial locality => lower miss rate; large block => higher latency replacement

lower miss penalty; more complexity + higher miss rates

lower miss rate; slower access; more complex; more power

faster L1 hit time + parallel translation; synonyms

Lower miss rate in spatially local code + more efficient (pipelined) block reads from memory; loss of 

efficiency for temporally local code + longer miss penalty + more collisions.

Lower miss rate spatially local + shorter miss penalty + less collisions; less efficient memory access

shorter write-miss penalty + no delay for reads that hit 

in buffer; more complexity and energy.

Lower memory bandwidth + more efficient memory access; more complexity

Faster writes + improved miss rate if active read blocks get hits that 

written block wouldn't get.

Lower page miss rate + smaller page tables; longer replacement latency + more 

internal fragmentation.

Less overhead flushing caches and TLB entries on context switch; 

more complexity and energy for PID matching + more space.

For write-back, faster write miss (no need to load block)+ 

less load penalty (on write-back).

Provides for simple cache flushing.



A system uses an inverted page table on a machine with 64-bit virtual addresses. The inverted page table is 

hashed into, and if there is a miss (page number not found), the page number is re-hashed with a second hash 

function and the table probed again. If that fails, another rehash is applied, and so on. If after k re-hashes the 
page number is still not found, the table must be linearly searched. Each entry refers to a specific frame: e.g., 

page number 10 in entry 3 means that page 10 is in frame 3. A "free" bit in an entry indicates whether the 

frame contains a valid page.

If the requested page is not in memory, a second table indicating the page number and its corresponding disk 

address must be read to fetch the page from disk.

Q. How many entries in the inverted table if physical memory is 32 GB and pages are 4MB?

Q. How big is the table? (Round the size of an entry up to the nearest integer number of bytes.)

Q. How many levels would be required for a multi-level page table scheme (not inverted), assuming 
each sub-table at any level fits in a single page?

Q. How big is the disk map per process? That is, each process has its own pages, and each has its 
own map from page numbers to disk addresses for pages that are not in memory but on disk. (NB--
Give a maximum, minimum, and some expected size for the table.) The disk is 64 GB, and each 
addressable unit on the disk contains 4kB.




