
                                                         Mid-term Exam, 2012 spring

NAME  ______________________________________________

                                                  READ THIS, IT IS IMPORTANT

Exam questions are not easy to write. Their purpose is to guage the degree to which you have absorbed the 

lessons of the material covered and are able to put them to use. Testing one's ability to calculate numerical 

values or other mechanical problem solving does not much further that purpose; unfortunately, other ways of 
asking questions are hard to invent. Here's the point: Be aware of the goal of each question and try to 

demonstrate your relevant knowledge.  Be aware that the problems presented may not be well designed to elicit 

your understanding.  Explain your thinking, adding whatever additions you feel best allow me to understand 

what you know and understand. If the exam is not allowing you to do that, you may even insert comments and 

explanations that are off the given topic. Some questions likely have flaws: poor or incorrect wording, mistaken 

values, missing information, contradictions, or presentation that is confusing or leads one's thinking astray. 

Comment on such difficulties if you encounter them. Saying something like, "This question is stupid," is a good 
start. Anything that helps me learn what I need to know is valuable to both of us.

Adapt your test taking strategy to the exam: I try to write long exams with a wide range of difficulty. I do not 

expect them to be completed. Instead, I give you a selection to choose from. Do the easier ones first. If you still 

have time, come back to the harder ones. You can choose to do only part of a question, especially if answering 

is taking a lot of time. Partial and extra credit will be given liberally. Obviously, longer and harder problems get 

proportionally more credit than shorter and easier ones.

Question. More than fundamental principles, historical accident and precedent have determined the 
nature of computer systems as we know them today. What forces have acted in the past or are 
currently affecting future directions in system designs and capabilities? How are these forces 
changing? What new directions might become attractive that were not before? Here is a list of key 
terms to work with:

Heirarchical design, standard interfaces, abstractions, monopolization 

Commonality, generality, customization, reconfigurabilty, design complexity

Productivity, performance, cost (acquisition and operation), energy, power

Yield, learning curve, economy of scale, fixed costs (mask sets, silicon foundry capability)

Printing versus assembly, copying, digital representation
Price versus time curves, latency versus bandwidth

Marketability, supporting legacy program code, application portability 

Large-scale infrastructure (communications, cloud computing)

Personal devices, embedded devices, functionality reward versus expense

Miniaturization, device scaling, switching energy, leakage current, heat density

Switching speed, voltage and frequency scaling, 

Virtual machines, simulation, portability, migration 



There are too many "right" answers to state a single response as the correct one for this 
question. We can start by looking to the fact that legacy code has been a very big influence on 
what designs are accepted in the market. This is generally the issue of standardized, abstract 
interfaces, which the PC is an example. To the extent these exist, markets and products grow 
around them, the cost of products goes down, and the direction of development is driven by 
these two effects. Start up costs of design overhead for chip manufacture dictates that chip 
design effort will go into the common denominator. However, the emergence of personal 
devices, with non-standardized components, and their need for specialization to accomodate 
adequate processing power at low energy costs, means that an opening has emerged for new 
and different architectures to develop.

This is also an effect of virtualization. Because server farms have to be heterogeneous to 
some degree, and virtual machines are commonly used, the need for standardization at the 
micro-architecture level is less important as legacy code and code written for legacy 
architectures can continue to be supported in an environment which is not uniform. This also 
suggests an opening up of paths of development for computer architectures.

Another influence on future developments in architecture come from the increased importance 
of basic physical limitations on computing hardware. As the improvement rate for performance 
and the cost/performance ratio has been flattening, power density and clocking rates have 
leveled off as well. The improvement in performance is now dependent on the clever use of 
parallelism. While we can expect numbers of cores to keep increasing per chip, this cannot 
continue indefinitely. In particular, making use of multi-core and general parallelism is 
constrained by 1) the complexity of writing correct, highly parallel programs that achieve 
performance gains, and 2) bottlenecks such as the memory bandwidth disparity between 
processors and memory devices. In particular, the latter is acerbated by the increase in on-
chip parallelism.

Finally, markets for computing devices are broadening. For instance, network switches are 
alone a significant influence on developments in computing machinery. Embedded devices are 
ubiquitous and heterogeneous. This suggests a fracturing into many avenues of development, 
each with different parameters. Watching the changes driven by the influences of economy of 
commonality and their contradictates from the influences of market disparity will be an 
interesting story to watch unfold.



The LC3 represents a standard, basic CPU. Compiling C code for the LC3 produces simple assembly 

language code, which is translated to LC3 machine code. Separate compilation produces files that must be 

linked. Linking can be done at the time the load object file is produced, and also at runtime when the loader 

loads the program to memory. Certain standard pieces of code are inserted: PREAMBLE, ENTER, and 

LEAVE. These do standard actions to conform to C or OS protocols. Below is shown a main() and a 

schematic of its translation to an assembly code link object. OS convention maps programs to memory by 

segments: code, data, and stack. Here, the data segment immediately follows the code segment.

int f( int );

int main (void) {
    int x = 0;
    x = f( x );
    return(0);
}

int f( int z ) {
    if (z>0) {
        z = z+5;
    }
    return( z );
}

The C code for f() is separately translated similarly. Addresses of functions and data constants (such as "0" 

above) are located in the Global Data Table, and the preamble sets the GDP (R4) to point to it. The two object 

files are linked to produce the load object file. Here is a command that does linking:

    lcc main.lcc f.lcc

The output is "main.obj", an LC3 load object module containing the machine code generated from both files. 

Linking merges the two global data tables. Link objects typically include symbol tables for all symbols 

referenced so that references in one object to a location in another object can be resolved.

Load editing adjusts addresses as needed to correspond to the memory locations where the executable load 

object's segments are loaded at runtime. Load objects contain tables indicating all addresses and offset fields 

that must be relocated. The LC3 does not have virtual memory; so, all addresses are physical.



Q. On the diargram at right, draw the 
memory map at runtime for the 
program above. Assume f() has been 
called but has not returned. 

Indicate locations of the following:
--- preamble
--- ENTER and LEAVE code blocks
--- the global data table ( constants
     and function pointer variables)
--- call frames (arguments, 
     local variables, return value,
     and return address)

Assumptions:
--- this is a user program
--- the preamble sets SP = xFE00
--- OS area starts at x0200
--- user area starts at x3000
--- memory-mapped I/O area starts
    at xFE00. 

Draw arrows to show where the PC, 
SP, BP, and GDP point.

*Make any reasonable approximation 
for the exact layout of the global data 
table, call frames, and the location of 
the BP.

*Explain any details or assumptions.



Q. Consider the function f(). It has an "if" 
statement which generates the code at right. 
The ADD is part of the evaluation of the if's 
conditional expression. R4 is the GDP, and 
the third entry in the gobal data table is,

     .FILL   lc3_L2_f

What is the code between the BR and the L6 
label doing? Is this the IF's code that is 
executed when the conditional expression 
evaluates to TRUE or to FALSE?

*Note that "L6" and "lc3_L2_f" are compiler-
generated labels and there are no branches or 
jumps after lc3_L2_f except for RET.

*Recall that the GDP is R4.

...
ADD R7, R7, R3
BRn L6
ADD R7, R4, #2
LDR R7, R7, #0
JMP R7
L6
...
lc3_L2_f
...
RET

Q. During linking and/or load editing, would the offset value of the BR instruction need to be 
adjusted? What about the global data ".FILL   lc3_L2_f"? (Recall that load editing takes place after 
assembly, while for LC3's lcc, linking takes place using the assembly language output of the 
compiler.) Explain.



Joe is working on the OS for the LC3, and has written a device driver for the keyboard. He has also written 

a service routine that user programs can call to get keyboard input data. The service routine is envoked 

with "TRAP x10". The interrupt vector for the keyboard is x0180. The service routine is called by a library 

function "get()" that is linked with the user's C code. Joe's code is shown below (mostly just the 
comments):

KB_INIT
    ;--- write VT for KB_SERVICE
    ;--- write VT for KB_HANDLER
    ;--- enable keyboard interrupts
          RET
KB_HANDLER
    ;--- get keyboard data
    ;--- insert in buffer
    ;--- set Ready flag variable
          TRAP x12
    ;--- enable keyboard interrupts
          IRT
KB_SERVICE
    ;--- while (1) 
    ;---    check Ready flag
    ;---    if Ready
    ;---        get data from buffer
    ;---        put data in R0 as return value
                RET
    ;---    else
                TRAP x11
    ;--- end-while

*TRAP x11 jumps to a scheduler that starts another 
program running. TRAP x12 checks whether some 

program is waiting for keyboard data, and if so, schedules 

it to be reloaded and run as if it was returning from its 

TRAP x11 call.

Q. In the diagram above, show memory areas for the OS and user stacks. Indicate where in 
memory the KB_HANDLER and KB_SERVICE code is located. Add arrows from the VT to 
indicate where their VT entries point. Show where the get() routine is in memory after linking. 
Show where a call to get() would be. Indicate where the "TRAP x10" instruction would be in 
memory. Indicate where the user's PC and PSR are saved when an interrupt occurs.



Q. Suppose the LC3 were altered so that TRAP executed just like an interrupt: the mode is 
changed to kernel mode, the SP is switched if the mode was user mode, the PC and PSR are 
pushed onto the stack, and then a jump is made through the corresponding entry in the VT. What 
little bit of Joe's code needs to be fixed?  

Q. Suppose also that memory protection is implemented so that user code cannot access OS or 
I/O memory for read, write, or execute. Could OS service routines return values to user programs 
larger than would fit into a few registers? If it is possible, suggest how it could be done. If it is not 
possible, suggest an alteration to the LC3 that would accomodate passing large return values.

Q. The "get()" routine is written in assembly language, but conforms to the C conventions for 
calling a function: it gets its arguments from the stack and sends its return value back to the caller 
via the stack, repositioning the SP and BP before returning. However, when it calls TRAP x10, it 
does not use the C stack discipline, nor does the TRAP x10 code. For instance, the TRAP x10 
return value is sent to get() via R0. However, TRAP x10 could have been written to conform with 
the C stack discipline: arguments and return values might be sent via the stack. C code could 
generate the usual C function call code but instead of using JSSR use TRAP for the jump. For 
instance,

    #define KB_SERVICE 0x10
    y = sys_call( KB_SERVICE);

might generate the appropriate code if we had the compiler recognize sys_call() as different from 
the usual function call and use TRAP where it would normally use JSSR. Do you see any problem 
with this scheme?



Two load-store architecture machines, M1 and M2, have the following characteristics:

                      M1                         M2

                   ---------                   ----------
CR               4 GHz                    3/2 GHz

CPI-alu          3/2                          1                       ALU operations

CPI-br             5                            3                       Branches

CPI-mem        20                           7                       Loads and Stores

The CPIs are averaged over all instructions in each class. Given an execution trace of any program P, let a 
be the number of ALU operate instructions in P's trace. Let b be the number of branch instructions and m 

the number of memory access instructions in the trace. Assume a, b, and m are non-zero.

Q. Determine the characteristics of an execution trace in terms of a, b, and m, such that M2 out 
performs M1. What sort of a program might P be? That is, what kind of job would have these 
characteristics? Hint: use the basic processor performance equation and the speed-up formula 
of M1 versus M2 to find an expression relating a, b, and m.

Two machines, M1 and M2, implement the same ISA:

Machine        CPI-A      CPI-B       CPI-C       CR 

-----------       --------      --------      --------     -------

    M1                 1             2               4          1.6  GHz
    M2                 2             3               3          2.0  GHz

There are n instructions in trace T: 60% are class A, 30% are class B, and 10% are class C.

Q. What are the MIPS ratings for both machines for T? Recall MIPS = n / (time of execution) 
expressed in millions of instructions per second. What is the speed-up of M1 w.r.t. M2?



Q. Suppose we want to make the slower machine as fast as the faster machine, but we can only 
improve the execution time of one class of instruction. Find the minimum execution improvement 
necessary for one class of instruction. That is, for which machine and which class of instruction 
should we improve performance and by how much, such that the least improvement is needed? 
What is the new CPI for this class?

Q. Suppose we can augment the ISA with MMX instructions that can operate on multiple, short, 
operands in parallel 10 times faster than without the MMX instructions. What sort of instruction 
mix would result in a speed-up of 2 for M1? For M2? That is, given x% of instructions can be 
executed as MMX operations, find x that gives a speed-up of 2.

Q. We wish to compare the performance of two machines, X, Y. We have 3 benchmark programs 
with data, b1, b2, b3. We have execution times for each benchmark on each machine and on a 
reference machine W, (T-x-1, T-x-2, T-x-3, T-y-1, T-y-2, T-y-3, T-w-1, T-w-2, T-w-3). Give an 
expression for each machine that sums up its performance relative to the reference machine. 
Show that the ratio of the two summary measures is a summary of relative speed-ups of the two 
machines. Suppose W is particularly slow for b2. Would your comparison change if we used 
reference machine W2 which runs b2 four times faster?



We run program P on two different machines, a 1-core processor and an 8-core processor, with the 

following results. CPI_i is the average cycles per instruction for a single core on an i-core processor:

    CPI_1 = 1.2, CPI_8 = 1.8

The number of instructions executed per core on an i-core processor is n_i:

    n_1 = 10, n_8 = 1.3 (in Giga-instructions)

We can adjust the voltages and clock rates:

    CR = 3 GHz at v = 1 Volt, or CR = 1/2 GHz at v = 1/2 Volt

Power consumption is = 5(v * v) CR (1/GHz) per core:

    15 Watts at 3 GHz, 5/8 Watt at 1/2 GHz.

Q. Find the time to run P and the total energy consumed in all four cases: (1-core, 3 GHz; 8-core, 
3 GHz; 1-core, 1/2 GHz; 8-core, 1/2 GHz). Recall, energy = power * time. What is the maximum 
ratio of energy consumption to get the job done. What is the maximum speed-up of the fastest 
versus the slowest? Which configuration offers the best trade-off? Hint: use the basic processor 
performance equation to get the execution time.



A load-store machine M has a two-level cache heirarchy. On an L1 hit, instruction fetch completes in time 

for a non-memory instruction (not load/store) to be fetched and complete execution in one cycle. For a 

load/store instruction two requests are sent to L1 sequentially, one for fetch and one for data access. If both 
hit in L1, execution takes two cycles. If L1 misses, the first cycle detects the miss, and then 10 cycles are 

required to detect a hit or miss in L2. If L2 hits, then L1 completes the access in one more cycle. But if L2 

misses, memory access takes 100 cycles, then 10 cycles later L2 sends a ready signal to L1, and L1 then 

completes the access in one more cycle. The CPU stalls until all accesses are complete.

Q. Given clock rate CR how much time is required to execute a non-memory 
instruction that hits in L1? How much time to execute a memory instruction that 
hits in L1 for both fetch and data? What is the L1 hit time per access?

Q. How much time is required for a non-memory instruction to complete 
execution if it misses in L1 but hits in L2? If it misses in L2? Write each 
as a sum of individual components.

Q. What is the miss penalty for an access (instruction fetch or data) that misses in L1 and hits in 
L2 (aka, L2 hit time)? What is the miss penalty for an access to L2 that misses?

Q. Give an expression for average instruction execution time in terms of the quantities above 
and miss rates for L1 and L2.

Penalty time is the extra time we have to spend to access the next lower level. Every instruction has to hit L1. If we miss L1 

and hit in L2 we pay an extra 10+1 cycles. An L2 miss incurs that expense plus another 100+10 cycles.



We've just derived the cache performance equation. We can use it to deal with the LS instructions. Because there are two 

accesses per instruction, we multiply by 2.



Machine M has a split L1 cache and unified L2. Running program P, L1's miss rate is MR_1 = 5% 

(combined) and L2's miss rate is MR_2 = 1%. Loads and stores account for 30% of instructions executed. All 

misses (loads, stores, and instruction fetches) cause CPU stalls. If both fetch and data access hit in L1, 

instruction execution time is L1's hit time. L1's fetch and data accesses run in parallel, but L2 processes 

requests from both serially. The number of instructions executed is n, M's clock rate is CR, cache i 's hit time 

is T_i, and memory's access time is Tm. 

Q. How many memory accesses occur? State the result in terms of the parameters given. How 
many hit in L1? How many miss L1?

Q. What is the total execution time, ignoring all stalls? How many clock cycles?

Q. Of the accesses that miss in L1, how many miss in L2? How much main memory access stall 
time results? How many stall cycles?

Q. How much stall time is attributable to L2 access, ignoring main memory access stalls? How 
many cycles?

Q. What is P's total running time? How many cycles? What is M's average CPI?



Q. Suppose memory access time does not improve while processor improvements double the clock 
rate. Assume L1 and L2 access times are also halved. Show an expression for the new CPI in 
terms of the old clock rate. What effect does this have on average CPI?

Q. Show the speed-up of the new processor relative to the unimproved version.

Q. Assuming some reasonable relationships between T_1 and T_2 and T_m, what qualitatively 
is the effect of the improvement? What does Amdahl's Law suggest in regard to which aspect 
of performance should be improved? Supposing CR keeps doubling every two years?



Q. In the address bit-field diagrams below, divide the address bits into fields for byte number 
within a word, word number within a cache block, and tag, showing the number of address bits in 
each bit field as it applies to L1, L2, and virtual pages.

Machine M has 32-bit virtual and physical addresses, 32-bit words, and memory is byte addressable. Pages 

are 64 kB. L1 is a 256-kB direct mapped cache and L2 is a 4-MB 4-way set-associative cache. Cache blocks 

are 8 and 16 words for L1 and L2, respectively.

Q. Comment on the feasibility of using virtual indexing in this system. (Recall, virtual indexing 
indexes into the caches before address translation.) Is there a performance problem w.r.t. to the 
TLB in this system?

Because page# overlaps 2 index bits, 
physical indexing results in an L1 delay until 
after TLB translation is done. Virtual 
indexing solves this problem. In that case, if 
L1 is physically tagged, the entire frame# 
must be used for the tag as the 2 physical 
index bits are not the same as the virtual 
index bits, and a partial frame# would not 
uniquely identify which block was present. 
Virtual tagging works and L1 access is fast. 
L2 can be physically indexed and tagged.



Q. Comment very briefly on the performance tradeoffs of each cache feature.

1. larger cache blocks

2. more cache levels

3. more associativity

4. virtual tagging

5. larger total cache size w/ larger blocks

6. larger total cache size w/ smaller blocks

7. write buffering w/ a searchable buffer

8. write-back

9. no-allocate/write-through

10. larger pages

11. PID fields in caches and TLBs

12. word-level valid bits within cache blocks

13. valid bits in TLB entries

More spatial locality => lower miss rate; large block => higher latency replacement

lower miss penalty; more complexity + higher miss rates

lower miss rate; slower access; more complex; more power

faster L1 hit time + parallel translation; synonyms

Lower miss rate in spatially local code + more efficient (pipelined) block reads from memory; loss of 

efficiency for temporally local code + longer miss penalty + more collisions.

Lower miss rate spatially local + shorter miss penalty + less collisions; less efficient memory access

shorter write-miss penalty + no delay for reads that hit 

in buffer; more complexity and energy.

Lower memory bandwidth + more efficient memory access; more complexity

Faster writes + improved miss rate if active read blocks get hits that 

written block wouldn't get.

Lower page miss rate + smaller page tables; longer replacement latency + more 

internal fragmentation.

Less overhead flushing caches and TLB entries on context switch; 

more complexity and energy for PID matching + more space.

For write-back, faster write miss (no need to load block)+ 

less load penalty (on write-back).

Provides for simple cache flushing.



A system uses an inverted page table on a machine with 64-bit virtual addresses. The inverted page table is 

hashed into, and if there is a miss (page number not found), the page number is re-hashed with a second hash 

function and the table probed again. If that fails, another rehash is applied, and so on. If after k re-hashes the 
page number is still not found, the table must be linearly searched. Each entry refers to a specific frame: e.g., 

page number 10 in entry 3 means that page 10 is in frame 3. A "free" bit in an entry indicates whether the 

frame contains a valid page.

If the requested page is not in memory, a second table indicating the page number and its corresponding disk 

address must be read to fetch the page from disk.

Q. How many entries in the inverted table if physical memory is 32 GB and pages are 4MB?

Q. How big is the table? (Round the size of an entry up to the nearest integer number of bytes.)

Q. How many levels would be required for a multi-level page table scheme (not inverted), assuming 
each sub-table at any level fits in a single page?

Q. How big is the disk map per process? That is, each process has its own pages, and each has its 
own map from page numbers to disk addresses for pages that are not in memory but on disk. (NB--
Give a maximum, minimum, and some expected size for the table.)




