Multi

What have we learned

How to build@ogrammable sy%

— Processor, memory system, |0 system, interactions with OS and compiler

Processor)design

— ISA, single cycle design, pipelined design, ...
~ —_ —~

Basic computer system(design principles & mecha‘m

— Levels of abstraction, pipgﬂning, caching, address indirection, DMA, ...

Understanding' why your programs sometimeé run slowl;{)

— Pipeline stalls, cache misses, page faults, 10 accesses, ...
~—— ~ N— ——

Major Lessons to Take Away

[ Levels of abstracﬁonje.g. ISA—>processor—RTL blocks—>gates)
— Simplifies design process for complex systems

— Need good specification for each level

Pipelining
— Improve throughput of an engine by overlapping tasks

— Watch out fobetween tasks

— Maintain a close(copy of frequently accessedldata

— (Avoid long accessegor expensive recomputation (memoization)
— Think about/associativity[ replacement)policy
— Impact of algorithm and layout on locality
Indirection (e.g. virtual=physical address translation)
— Allow§ transparent re an
Overlapping (e.g. CPU work & DMA access)
Hide cost of expensive tasks|by executing them in parallel with other useful work

Parallelism




Sun Fire x4150 1U server

ZEZRE

Channel B

Channal &

Pele
A FCI-E
P  Dual FSB ESI [PCI-E]
o % to MCH
. 10.5 GB's \/

iftel =

FsB o W

1333 MTis s 3]
(=4
Intel Xeon E
L]

as2611.1 GP
D0 TAN a2

*R-I\Pm{m
o1 | — — |

PCI-E x16 - 2 | mmm — — |
PCI-E %16 - 0 | I m— —

3B 9B

“ ¢ Standard ~ Clockrate (MHz) M transfers per second - DRAMname DIMM name
DDR 3 266 DDR266 2_123 PC2100

DDR 150 30 DDR3N 00 PC2400

DDR 20 40 DDRA00 0 PC300

DDR2 266 3 DDR2-533 420 PC4300

(o) ™Y CerMl) oot (s MB) wsuo

DR T 0 DRSO 6 Rl

DDRS il 1066 DDR3066 828 PCES0

DDR3 666 135 DDR3-1333 10,664 PCLOT00

DDR3 8§00 1600 DDR3-1600 12800 PCI2800

DDR4 1066-1600 2033-3200 DDRA-3200 17.056-23600  PC23600




Intel Nehalem microarchitecture

quadruple associative Instruction Cache 32 KByte, IR
128-enfry TLB-4K, 7 TLB-2/4M per thread
128 - ——
Quick Path >
Prefetch Buffer (16 Bytes) Branch .
Prediction connect -«
global/bimodal, >
Predecode & loop, indirect 4 %20 Bit
Instruction Length Decoder | | jmp 64GTis
II1111 |
Instruction Queue
: DDR3 T
18 )iﬁilnstruitons M < )
gnment, Controller [+
MacroOp Fusion 3 x 64 Bit
1 1 I 1,33 GT/s
Simple Slmple Slmple
Decoder ode ode
Common
Loop l Y L3-Cache
Stream  — Decoded Instruction Queue (28 pOP entries) (a-{ icro 8 MByte
=il T Instruction
| MicroOp Fusmn Sequencer
2x
Re‘"?;‘e“‘ 2 x Register Allocation Table (RAT)
ister
Re,f_’“e Reorder Buffer (128-entry) fused
\ Reservation Station (128-entry) fused | 8-way,
G 64 Byte
Cacheling,
Integer/ E R
MV ALU | L2-Cache
2XAGU |
512-enfry
L2-TLB-4K

Result Bus

octuple associative Data Cache 32 KByte,
B4-entry TLB-4K, 32-enfry TLB-2/4M




Rack-Mounted Servers

Sun Fire x4150 1U server

2 Redundant
power Supplies

3 PCI Express Slots

,—”f Management MIC 2 USB Ports

System Status LEDs Management 4 Gigabit NICs Video
Serial

C. Kozyrakis 34



Motivation: Single Processor Performance Scaling

7 E .

10 Transistors

10° L (_T_*;'\__qy_sa_nds)

10° L Sin?gle-Th-read
: Performance

100 e (?’_F.’?_‘F_'_N_T}

10° |

10% |

<A

I : ¥ AL A i Number
10 i_ ............. ___________ ..... o ____________ ........... ol ............ ..‘ ______ ...... o fcore_s
10° |+ g e e
1975 1980 1985 1990 1995 2000 2005 2010 2015
Data collected by M. Horowitz, F. Labonte, O. Shacham, K. Olukotun, L. Hamm C. Batten

Multi-core Chips
(aka Chip MultiProcessors or CMPs)

e Put multiple cores on a chip
— Modular, scalable, simple, fault-tolerant

— Relies on request-level, task-level, or data level parallelism
» Hopefully there is lots of them

— Can trade-off parallelism for power

e All processor vendors implement multi-core chips
— In embedded, server, and even desktop systems

e Challenges

— HW: what type of parallelism do we optimize for; what support do we
provide for inter-processor communication; ...

— SW: how do we write parallel programs
e A major crisis for the IT industry...




Sample of Multi-core Options

a) Conventional microprocessor b) Simple chip multiprocessor

CPU Core CPU
| Registers | Cgre N
: : -egs
| |
| L1II$ | | L1ID$ | L1 % |_1 S
L2 Cache o
; L2 Cache L2 Cache
|

I
Main Memory

Main Memory

Early multi-core designs

c) Shared-cache chip multiprocessor d) Multithreaded, shared-cache chip multiprocessor

CPU CPU CPU Core 1 CPU Core N
CF?re1 o C;re N Regs|Regs Regs| Regs
_Regs ﬁegs T _Regs IElegS
1 1 1
L1I1S|L1D L11 L1IE| 1 1 | |
e
L2 C";:C“e L2 Cache
1

' '
Main Memory @ Main Memory




And There is Much More...

e Data parallel architectures

— Vector processors, GPUs, ...

e Heterogeneous multi-core

— Already the mainstream in cellphones

e Multi-socket parallel systems

— Multiple chips with multiple cores each

e C(Clusters

* Hybrids of the above...

Another HW Issue;lMemory Model for Multi-core

* One approach:|shared memory multi-cores

— All core view thesame physical address space for memory | ?

L]

e |Advantages

— Parallel tasks canlcommunicate implicitly using loads and stores

— Requires evolutionary changes to OS

— App development| first focus on correctness, then on performance

* | Disadvantages

- Implichl communication is hard to optimize

— Synchronization can get tricky

— Introduces (again) the issue of cache coherence

¢ The problem we had with DMAs, but now it’s the common case...

[ 7 e



CAL»\C Cohere\nce/ MQMor\‘ Consis‘l'encg

®

Regfile |w $z x RegFile 7 JRegFile

5 H O & e

cacL\Q AdD gzltz X [
5 9 . :

e []

%451 X
'I: X p T Commumicalion

, twler connect

caLL\ 14

--- What should processor PO see? /{ 7 of .

? -~ Write- ? Write- ?
When? x = MCM Write-through? Write-back®

--- What should memory hold? --- Bus contention, L2, L3?

--- Ordering of events is unknown.

Consistency

¢ Consistency addresses WHEN a processor sees an update to memory
If two processors touch a memory location, what happens?

¢ Depending on the consistency model, both of the below sequences might
execute the conditional statement for zero variable value
* The outcome depends on consistency model
» There is no single “correct” behavior for all machines

CPU 1 Executes: CPU 2 Executes:
Pl: A= 0; P2: B = 0;
A =1; B =1

Ll: if (B ==0) .... L2: if (a == 0)




Sequential Consistency (Strong Ordering)

+ Requirements:
All memory operations appear to execute one at a time
All memory operations from a single CPU appear to execute in-order

All memory operations from different processors are “cleanly” mterleaved with
each other (serialization)
— Delay all memory accesses until invalidates are done.

¢ Sequential consistency forces all reads and writes to shared data to be
atomic

Once begun. the memory operation can’t be mterrupted or interfered with
Resource 1s locked and unusable until operation is completed

Spin Locks Under Sequential Consistency

¢ Sequential consistency is not a silver bullet.......
behavior STILL nondeterministic

» Data races still can occur due to relative timmng of the CPUs
* Similar situation to single CPU with multiple threads

» Solution: lock critical resources (shared data). Common to use spin locks of
atomic read-modify-write operations (test and set).

int test_and set(volatile int *addr)

{ /* sets address to 1, returns previous value */
int old value;
old value = swap_atomic(addr, 1);
return(old value);

void lock(velatile int *lock_status)
{ /* wait until lock is captured */
while (test_and set(lock_status) == 1);




Sequential Consistency Problems

¢ Can’t use important hardware optimizations
. Problem with anything that interferes with strict execution order
- Write buffers, Write assembly caches, Non-blocking caches...

- Not a problem with uniprocessors

¢ May not be able to use important software optimizations
. If you want to be really strict about it. source code must execute as-is. so no:
- Code motion, register allocation, eliminating conunon subexpressions...
. Same problem exists with uniprocessor concurrency

¢ Relaxed memory consistency models:
 Permit performance optimizations
» BUT. require programmer to take responsibility for concurrency issues

Total Store Ordering

¢ Relaxed Consistency
» Stores must complete m-order
* But, stores need not complete before a read to a given location takes place

¢ Allows reads to bypass pending writes.
. Store buffers allowed!
. But. writes MUST exit the store buffer in FIFO order.

¢ Problem: Other CPUs don’t check the store buffer for data.

+ So. aread from CPU #2 mught not see that data has “already” been changed
by CPU #1

+  Synchronization of some sort required before reading potentially shared data




Partial Store Ordering

¢ Even more relaxed consistency
» Stores to any given memory location complete in-order
* But. stores to different locations may complete out of order
* And. stores need not complete before a read to a given location takes place
» Like total store ordering. but ordering concept applied only on a per-location
basis

¢+ Additional Problem: Spin locks may not work
* Modifying a shared variable involves:
— Writing to the variable’s memory location
— Changing the spin lock value to “available™
— But, what if the spin lock write completes before the variable write?
* Solution: hardware must support some sort of barrier synchronization
— All CPUs wait at barrier until global memory state is synchronized

— Release spin lock only after barrier synch.

Weak Consistency

¢ Really relaxed consistency
« Anything goes. except at barrier synchronization points
* Global memory state must be completely settled at each synchronization
* Memory state may correspond to any ordermng of reads and writes between
synchronization points

¢ Permits fastest execution
* But. managimg concurrency is entirely the programmer’s responsibility




Hardware Cache Coherence Using Snooping

* Hardware guarantees that loads from all cores will
return the value of the latest write

CPU

* Coherence mechanisms

— Metadata to track state for cached data

activity and reacts if needed to adjust the state
of the cache data

g'I — Controller that snoops bus (or interconnect)
Ll
at

»| D$ data

* There needs to be a serialization point

“"' — Bus, shared L2/L3, memory controller, ...

e Suggest a snooping protocol for assuming write-through caches
— What happens when a core writes what another cores caches?

— What happens when a core reads what another core caches

MSI:
Simple Coherence Protocol for Write Back Caches

Each cache line has a tag M: Modified
S: Shared

Address tag I I lid
: Invali

state

bits f>P1 reads
M

Other processor reads or writes
\Write miss

o
X\ ther processor

P, writesback

intent to write

Read\\ PN

miss S I
Read by any Other processor
; - Cache state
tent t t
processor inTent o wne in processor

C. Kozyrakis %
1



MSI Example with 2 Cores

P reads | Py -
P, writes P, reads, = M or writes
P, reads P, writes b,?-ck' e rite miss
P, writes 7 ‘ﬂtﬁ' _ _
7 O , intent to write
P, reads / ‘e“‘"
i Read ' R\
P, wr!tes _ R 9"\
P, writes miss e ¢ —— 1
P, writes P, intent to write
P2 P, reads, />P2 reads
P, writes ba,,ck“#.f.—; M | or writes
’ 2 - “Write miss
/ S aXe
, 7 <N
- 7 X0 , intent to write
/ SR
Read_ N\
. Ty < e
miss S I

P, intent to write
C. Kozyrakis 1 27

Quick Questions

* How many copies of a cache line can you have in S state?

* How many copies can you have in M state?

e Why is serialization important?



Cache Coherence

¢ Coherence is the hardware protocol that ensures updates to memory
locations are propagated
 Every write much eventually be accessible via a read (unless over-written first)
* All reads/writes must support desired consistency model

¢ Coherence issue for uniprocessors
DMA changes memory while bypassing cache

¢ Coherence for multiprocessors
One CPU may change memory location already cached by another CPU

- Intentional changes to shared data structures
— Accidental changes to variables inhabiting the same cache block
Shared variables may be used for intentional communication

- So. coherence protocol performance may matter a lot

Snooping vs. Directory-Based Coherence

¢ Snooping Solution (Snoopy Bus):
« (Solution useful for smaller systems, including uniprocessor DMA problem)
+Send all requests for data to all processors
~ Processors snoop to see if they have a copy and respond accordingly
- Requires broadcast, since caching information 1S at processors

» Works well with bus (natural broadcast medmm)
— But, scaling limited by cache miss & write traffic saturating the bus
. Domumnates for small scale machmes (most of the market)

¢ Directory-Based Schemes
+ (Sealable Multiprocessor solution)
» Keep track of what 1s being shared i a directory
+ Distributed memory => distributed directory (avoids bottlenecks)
. Send point-to-point requests to processors




Basic Snoopy Protocols

+ Write Invalidate Protocol:
Multiple readers, single writer
» Write to shared data:
- An invalidate is sent to all caches which snoop and invalidate any copies
»  Read Miss:
- Write-through: memory is always up-to-date
- Write-back: force other caches to update copy in mamn memory, then snoop that value

Can use a separate invalidate bus for write traffic

+ Write Broadcast Protocol:
Write to shared data: broadcast on bus. processors snoop. and update copies
Read miss: memory is always up-to-date

Higher bandwidth (transmit data + address), but lower latency for readers

- From a bandwidth point of view, looks like write-through cache

An Example Snoopy Protocol

¢ Invalidation protocol, write-back cache

¢ Each block of memory is in one state:

- Clean i some subset caches and up-to-date in memory
- OR Dirty in exactly one cache

. OR Not m any caches

¢ Each cache block is in one state:
- Shared: block can be read
. OR Exclusive: cache has only copy. its writeable, and dirty
- OR Invalid: block contains no data

¢ Read misses: cause all caches to snoop

¢ Writes to clean line are treated as misses




Snoopy Protocol Example

CPU read hit

B Write miss for this block
\.

! Y {

: | CPU read
\ Invalid | s

'\.\ / Place read miss on us

CPU write

[ |
i

Write-back block
Place write miss on bus

Write miss
for block |

4
\

Exclusive |
\ (read/write) |-

; N:PU write miss
g EH writj :.it"\ / Write-back data
read hit

Place write miss on bus

()
3

Shared |

(read only) !

Place read
miss on bus

Il Triggered by Bus Activity
[ Triggered by CPU Activity

H&P Figure 8.12
(with typographic bugs fixed)

Pl P2 Bus Memory
step State  |Addr |Value |State  |Addr |Value |Action |Proc. |Addr |Value |Addr |Value
Pl: Write 10 to Al
P1l.Read Al
P2.Read Al
P2. Write 20 to Al
P2: Write 40 to A2
Assumes A1 and A2 map to same cache block
Pl B2 Bus Memory
step State  |Addr |Value |State |Addr |Value |dction |Proc. [dddr |Value |Addr|Value
P1: Write 10 to Al Eel | Al 10 TrMs | P1 Al
P1: Read Al
P2: Read Al

P2: Write 20 to Al

P2: Write 40 to A2




P2 Bus Memory
step Addr |Value |State  |Addr |Value |Action |Proc. |Addr |Value |Addr|Value
P1: Write 10 to Al Al 10 [T Pl Al
Pl: Read Al Al 10
P2: Read Al
P2: Write 20 to Al
P2: Write 40 to A2
P2 Bus Memory
step S Addr |Value |State  |Addr |Value |Action |Proc. |Addr |Value |Addr|Value
P1: Write 10 to Al Excl. Al 10 [T Pl Al
Pl: Read Al Excl Al 10
P2: Read Al Shar. Al Rals P2 Al
Shar. Al 10 Bk Pl Al 10 10
Shar. Al 10 RdDa P2 Al 10 10
P2: Write 20 to Al 10
P2: Write 40 to A2 10
10
Pl P2 Bus Memary
step State |Addr |Value |[State  |Addr |Value |Action |Proc. |Addr |Value |Addr|Value

P1: Write 10 to Al Faxcl. Al 10 IrMs Pl Al

Pl: Read Al Excl Al 10

P2: Read Al Shar, | Al RaMs P2 Al

Shar. Al 10 HrBk P1 Al 10 10

Shar. Al | JO0 [RdDa | P2 Al 10 10
P2: Write 20 to Al Jnv. Excl. Al | 20 |JTrMs P2 Al 10

P2: Write 40 to A2 10

10

Pl P? Bus Memory
step State |Addr |Value |State  |Addr |Value |Action |Proc. |Addr |Value |Addr|Value

=

P1: Write 10 to Al Excl. |41 | 10 OrMs | P1 [ Al

Pl: Read Al Excl | Al 10

P2: Read Al Shar. | Al RdMs | P2

o

Shar. Al 10 Bk | Pl

.

=

10

[

Shar. | Al RdDa | P2

P2: Write 20 to Al Inv. Exel, HrMs | P2

o
=
IJ
—
.

10

P2: Write 40 to A2 HrMs | P2

o

10

=

—_ e = = | — |—
—t
[}

™
e
~
[N
[ =
(]
1=
—

NrBk | P2

.




MultiProcessors -- UMA

¢ UMA - Uniform Memory Access
Several CPUs interconnect with shared memory/common bus

Caches used to filter bus traffic
- Works well up to 8-16 nodes (e.g., Encore Multimax)

CPU 1 CPU 2 CPU 3 CPU 4

CACHE 1 CACHE 2 CACHE 3 CACHE 4

O

MAIN
MEMORY

Nlultipmcessors - NUMA

¢ CC-NUMA - Cache Coherent Non-Uniform Memory Access
* Numerous clusters with mterconnect: global address space

Scales to many CPUs (as long as application has locality)
Becomes a “multicomputer™ if each cluster has a separate address space instead

of global memory addressing
1/O DIRECTORY 1/O DIRECTORY

N

/o DIRECTORY DIRECTORY

g
i

g




Do Caches Work In Multiprocessors?

¢ Basic cache functions are still a “win”:
. Caches reduce average memory access time as long as there is locality
- Memory can *self-organize™ by migrating pages to cluster where data is being used
- Caches filter memory requests

- Significantly reduce bus tratfic on single-bus model

¢ But, there are new challenges:
* Software must account for consistency model on any multiprocessor
— Tradeoff of software complexity vs. performance with relaxed consistency model
- A new cache “C” is revealed -- Coherence misses

- Two processes on two CPUs could cause data to migrate back and forth, causing
cache misses because the data is being used frequently (rather than because if is
used infrequently)

Software Solutions

Compiler tags data as cacheable and non-cacheable.
Only read-only data is considered cachable and put in
private cache. All other data are non-cachable, and

can be put in a global cache, if available.

Memory
Global cache

m=iu=lu=gus

P P




INVALID Not valid

SHARED Multiple caches may hold valid copies.
EXCLUSIVE No other cache has this block, M-block is valid
MODIFIED Valid block, but copy in M-block is not valid.

Event Local Remote
Read hit Use local copy No action
Read miss |lIto S, orltoE (S,EM)to S
Write hit (S,E)to M (S,EM) to |
Write miss | [to M (S,EM) tol

When a cache block changes its status from M, it first

updates the main memory.

A. Read Miss
=5 x= =5 X=3 -
S S S I
=5 X= =5 X= -
S S S S

=5| [x=2 x=4| [x=3] |8

m

X= X=2 X=4 X=




X= X=2 X=4 x=3 -
M | | I@
x=9 x=2 x=4 x=3
try again
x=9 x=2 x=4 x=9 -
S | | S

- writeback M

Following the read miss, the holder of the modified

copy signals the initiator to try again. Meanwhile, it

seizes the bus, and write the updated copy into the

main memory.

C. Write Miss
X= X=2 X=4 .
M I | I@

x=9 X=2 x=4 . writeback M
@ allocate X

X= X= x=3 X= .
@ now modify

X= X= =3 x=10 .

I | | M




Directory-based cache coherence

The snooping cache protocol does not work if there is
no bus. Large-scale shared memory multiprocessors
may connect processors with memories through

switches.

A directory has to beep track of the states of the
shared variables, and oversee that they are modified
in a consistent way. Maintenance of the directory in a

distributed environment is another issue.

Naive solutions may lead to deadlock. Consider this:

P1 has a read miss for x2 (local to P2)

P2 has a read miss for x1 (local to P1)

Each will block and expect the other process to send

the correct value of x: deadlock (!)

Cache coherence protocols guarantee that eventually
all copies are updated. Depending on how and when
these updates are performed, a read operation may

sometimes return unexpected values.

Consistency deals with what values can be returned
to the user by a read operation (may return
unexpected values if the update is not complete).
Consistency model is a contract that defines what a

programmer can expect from the machine.



Sequential Consistency

Program 1.
process 0 process 1

{initially,x=0 and y=0}

x:=1; y:=1;
if (y=0) then x:=2; if (x=0) then y:=2;
print Xx; print vy;

If both processes run concurrently, then can we see a

printout (x=2, y=2)?

A key question is: Did process 0 read y before process

1 modified it? One possible scenario is:

x=0 w(xi1) reacil y

=0 w(y,1) read x
|

Here, the final values are: (x=1, y=1)

x=0 w(xi1) realld y

y=0 w(y,1) read x
1 |

Here, the final values are: (x=2, y=1)

process 0

process 1

process 0

process 1



Properties of SC.

SC1. All operations in a single process are executed in

program order.

SC2. The result of any execution is the same as if a
single sequential order has been maintained among all

operations.

Consider a switch-based multiprocessor.

Assume there is no cache.

p0 p1 p2

\_
mum,

Process 0 executes: (x:=1; y:=2)
To prevent p1 or p2 from seeing these in a different

order, p0 must receive an acknowledgement after

every write operation.

Case 2
In a multiprocessor where processors have private

cache, all invalidate signals must be acknowledged.



Write-buffers and New problems

P cache

buffer

memory

process 0 process 1

{initially,x=0 and y=0}

x:=1; y:=1;
if (y=0) then x:=2; if (x=0) then y:=2;
print Xx; print y;

Let both x:=1 and y:=1 be written into the write buffers,
but before the memory is updated, let the two if
statements be evaluated.

Both can be true, and (x:=2, y:=2) are possible!

This violates sequential consistency.



Directory Based Systems

Prooensor
Cache
= }
E “’“‘“”gg E
: = =
| = ||
— | F= T
e | 1
£
« ®

Architecture of typical directory based systems: (a) a centralized
directory; and (b) a distributed directory.

Key idea :keep track in a global directory (in main
memory) of which processors are caching a
location and the state.

* Directory based schemes allow scaling

— They avoid broadcasts by keeping track of all Pes
caching a memory block, and then using point-to-point
messages to maintain coherence

— They allow the flexibility to use any scalable point-to-
point network



Basic Scheme (Censier and Feautrier)

@ @ *Assume K processors

cache cache *With each cache-block in
memory: K presence bits and 1
Interconnectmn network dirty bit
memory ————T| Directory *With each cache-block in cache :

Dirty bit 1 valid bit and 1 dirty (owner) bit

Presence bits

READ MISS
Read from main-memory by PE 1
— If dirty bit 1s off then {read from main memory;turn p[i]
ON; }
— If dirty bit 1s ON then {recall line from dirty PE (cache
state to shared); update memory; turn dirty-bit OFF;turn
p[i] ON; supply recalled data to PE 1;}

WRITE MISS
If dirty-bit OFF then

{supply data to PE _i; send invalidations to all PE’s
caching that block and clear their P[k] bits; turn dirty bit
ON; turn P[i] ON; .. }

If dirty bit ON then

{recall the data from owner PE which invalidates itself;
(update memory); clear bit of previous owner; forward
data to PE 1; turn bit PE[I] on; (dirty bit ON all the time) }



Write- hit to data valid (not owned ) in cache:

{access memory-directory; send invalidations to all PE’s

caching block; clear their P[k] bits; supply data to PE 1 ;
turn dirty bit ON ; turn PE[i] ON }

Key Issues

* Scaling of memory and directory bandwidth

— Cannot have main memory or directory memory
centralized

— Need a distributed cache coherence protocol

* As shown, directory memory requirements do not scale
well
— Reason 1s that the number of presence bits needed
grows as the number of Pes. --> But how many bits
really needed?
— Also: the larger the main memory is, the larger the
directory

http://www.icsa.inf.ed.ac.uk/research/groups/hase/model
s/dir-cache/

WRITE HIT
NOT OWNED



But there is much more

* There are many alternative coherence models
— Track different states to optimize communication cases
— Broadcast vs directory based coherence

— Protocols that deal with multiple levels of caches, multiple chips, etc

* QOther alternative: shared memory without cache coherence

— Do you see any issues?

* QOther alternative: message passing memory models
— Each core has a separate physical memory space
— Explicit communication (send/receive) needed to exchange data
e E.g., think of the way computers communicate on Internet



