
Parallel Processing

1. Definitions
2. Goals
3. Types

Ye Olden Processing

Boundaries are drawn arbitrarily, by us, for some
specific purpose.

One version of a (slightly) larger view of our
reality.

Parallelism is everywhere!

Internally and externally

Data matched on the fly with
instructions (forwarding, etc).

Instructions queued until data
is ready.

Instruction schedules reorder.

Commits (state change) are
done to preserve semantics.

Nullifying (speculation)

Caveat:
 serial work for M1 < serial work for M4 (coordination, dividing data)

Here h contributes to the serial portion. Could contribute to parallel part.

Less parallel work needed w/ n processors

Less serial work needed w/ n processors

More processors ==> Do a larger problem

In general, all above effects can play a part (+ or -).

--- serial work for coordination, initialization
--- parallel work for parallel portion, problem remapping
--- communication overhead and resources
--- memory and cache bandwidth effects
--- cache coherency

high-speed signals are
bouncy (jitter), and
corrupted by other
signals.

Detecting whether
signal is up or down is
difficult.

Shared Memory
Synchonization through R/W

ALL THREADS from SAME PROCESS

 --- Duplicate and switch: PC, PSR, RegFile, Stack, Private data

 --- Copy/Save/Restore state

 --- Shadow registers, renaming

 --- TLB content (separate page tables? or shared?)
 --- hardware switch
 --- TID, thread ID labeled

--- MULTIPLE THREADS from MULTIPLE PROCESSES

 --- PID + TID

 --- Larger state to consider (page tables, file and IO tables and
buffers)

Instruction
buffers

Contexts

Round Robin Select

--- skip stalled threads
--- longer response time
--- switching overhead

--- Faster response time
--- lower switching overhead
 --- affords more complex control
 --- faster execution between
--- Starvation now a problem?

Instruction
buffers

Contexts

Tagging by PID-TID

--- Multiple issue by thread

--- Context switch
 --- per pipeline stage?
 --- fill/drain?

--- Scheduling
 --- by dataflow
 --- independent threads
 more ==> parallelism

Single threaded execution

Multi-tasking

---- Multiple concurrent execution
 (not simultaneous)
---- Memory shared but separate (virtual)

---- CPU time-multi-plexed
 --- cooperatively, pre-emptively, IO

---- Process context switching
 drain/fill (pipes, caches, TLB, ...)

---- Extract ILP from single stream
 ---- Unused issue slots
 ---- pipeline bubbles/stalls

SMP, Symmetric Multi-Processing

---- Context switch per CPU

---- Simultaneous execution
 --- multiple programs/processes/threads

---- ILP extracted per process
 --- double silicon resources
 --- same NOP density
 ==> Could speedup be > 2?

Credits:

Introduction to Multithreading,

Superthreading and Hyperthreading

By Jon Stokes

Multi-Threaded (Superthreading)

---- Concurrent process scheduling
 --- process context switching
 --- cooperative, pre-emptive, ...

---- Single process, multiple thread execution

---- Time-multiplexed thread scheduling
 --- from same thread

---- Instructions issue from single thread

 --- thread context switch
 -- in HW
 -- per stage
 -- across stages

---- Execution slots filled
 --- due to stalled threads
 --- filled from non-stalled threads
 --- Lower density of NOPs

SMT, Simultaneous Multi-(Hyper)-Threading

---- Concurrent Processes
 --- context switching

---- Thread context switching
 --- independently on different pipes
 --- issue from multiple threads simultaneously

---- Average ILP = 2.5, empirically
 --- max single-thread issue = 4 (here)
 --- combined ILP ==> 4

---- Logical Processors == 2

---- Lowest NOP-density

