
1. pipe hazards
14. memory, cache

On clock tick:

1. Instructions written to next pipe stage reg
2. BR target address written to PC

BR target feedback is a
version of register forwarding
to PC.

PC is a version of pipe stage
register.

Added delays:
1. address adder after sign-extension.
2. EQUALS test after register fetch.

S_1-2 = 4/3 ~ 33%

S_1-3 = 5/3 ~ 67%

S_2-3 = 5/4 ~ 25%

Q. Is (3.) a reasonable choice given its expense?
What if (1.) is not possible?

Q. Delayed BR has same
performance as (1) above?

What about longer pipelines?

ADD

AND

X

SUB

BR

1. Let previous instructions complete
2. NULL following instructions
3. Save PC of problem instruction into EPC (PC+4)
4. Save exception code into EPC
5. NULL offending instruction (saves state = MEM+REG)
5. Jump to OS at 80000180
--- (or, freeze and start co-processor)
???---multiple exceptions?

CAUSE reg will tell us which stages
had exceptions and what they were.
PC values can be calculated from
EPC.

Data hazard detection can forward data without bubbles for operate instructions.

Load-use delay causes a bubble (unless compiler fills slot), then forwarding used.

Shorten feedback through register file using neg. edge triggered FFs.

Branch data hazard from operate instruction cause stall and one bubble, then uses forwarding.
Almost the same as load-use delay. Inserts NOP if branch taken.

Branch data hazard from LW instruction in DMEM causes stall and one bubble, then uses forwarding.
Same as operate data hazard.

Branch data dependency with LW in EX causes two bubbles, then forwarding.

Exceptions, traps, and interrupts can cause many bubbles.

EXCEPTION
Memory protection error

For (precise) exceptions,
--- 1. stage.PC ===> EPC (cause code #) ===> CAUSE register.
--- 2. upstream instructions <=== NULL (let downstream instructions complete)
--- 3. stage.INSTR_OP <=== NULL
--- 3 Jump to OS for service.

Questions

1. What to do w/ multiple exceptions during same clock cycle?
2. What to do w/ exceptions for completing instructions?
3. How to know what happened?
4. What about nested exceptions; i.e., exceptions occuring during exception handling?

