16- bt addce
kMCW\o(')) aAA(csse 5/ af&d‘s "o ':\ sses

Addresses refer to some number of bytes. - " %
. . - yle-
How many bytes is determined by the operation's data type. B2
4‘33«55@.&)« 83
= By
Native data types - F’F—
-- data register size (32-bit, e.g.)
-- byte operation 4 Seg"e‘""e' Be
-- half-word operation 'l'c S
-- word operation 'CS l’j
-- MAR size (40 bits, e.g.) *
-- load word .
-- load double word
-- load quad word .
-- virtual address (52 bits, e.g.)
-- page load
BFFFE
We can view memory as divided up
-- aligned, non-overlapping chunks W
-- aligned: first byte of first chunk is at x0000, e.qg. n
-- non-overlapped: memory is "tiled" by chunks o
-- chunk size depends on what we are interested in B8O
-- low address bits are offset into chunk 81
-- high address bits are chunk number B2
B3
thuk = B4t im L»Jch. Shessdl, 81
— ol «»ress Be
B39 ress Byl m“"‘? f -
‘3 .
bA'S‘ e um) Jfo
Jy & Byfe-siaed
daser
k. .

|

REFFF

Addvess Meh\ WM
oa® V3ed 0000 adee | BO | | 8
«d® Ved OO ad ol 81 |
QAN VA3d VOO0 AW 10 B2 B2
QAW VI8d VOO0 B |} B3 B3
r—
QN VeI V000 o 0d Bu] BY
AW VWded V00O Qlo) B8s | Bs
«aN Ved V000 ol(0 Bé X
v T ezl

—

BFFFF

TRV

BFFFE
BFFfF

b

.

For 2-Byte words, we can think of the 16-

Objecls ire

ol ffuct L

w0 ot stol o ofged.

Compound objects

-- hierarchical inclusion

-- higher-level composed of k lower-level objects

-- different offsets at each level

Mem

83 1 B, ||s1 ' B0

87 1 B¢ ||85lllB‘7'

D -woﬂ} ’3&

2-bile chonk tumber ("won}&k")

AN VIad VY00 v o

QAW VWIed V000 Y|

QAW VAed V90O Q0

QAW VeI V00 ol bj}e-’l

/ bﬁc— 0

87 1 B4

bit addresses as split into two parts:

-- Address[15:1] is word number
-- Address[0] is byte offset into word

Each word has byte-0 and byte-1.

— -kt Address —>

15-bit object % el

Rl B1
T
1
87 :Bé ||85 :BH
~~— V=

wg

8¢ B¢

W1

0000 0000 0000

0000 0000 0000

o D-werd
00

o

poord %

bbb aldress [—b>

1Y-bit D-weed % |of |l

&

Of course, we could also see a D-word as composed

of bytes.
— Ib-bt Address —>
87 18 1 5 1 BY 19-bit s # [t][4
\ 1
Suppose we have a cache. Say cache blocks are 16 B. We df{}:f

can say a cache block is 4 D-words, or 8 words, or 16 B.
We can think of memory divided up into 16 B "cache block-

sized" pieces.

Mem

8|s'|lB\q ISHl‘IBIZ BII:IBIO IB?EBZ

o7 8¢ [s iny “ g3 152 | 8 16] [Blck-O

block~1
\ \ \
831'1 330' 811': BZ§ 827'1 sz(l 82{‘: B2y 823‘l Bzzl anl 820 “ B ; BIf I] |‘ BIL
) |
" e——— lb-b Adeess —
]] |
block % |I)-uoré?§’: Wk | RX
| |
] YA N,u
|12 |o|+f 2 l;j'g 1 Io\‘l' 1 L
Of course, we can again flatten the hierarchy , T
however we care to. Here the D-word# no D-WORD # r W R
longer refers to which D-word in a cache block, ! 1
but which D-word of the entire memory. N 1Y- 5')'
1S
black % :
Here, we consider the cache block to be oc : B

composed only of bytes.

12- bi¥s Y A)?{(

)b \L ¥

0\5‘) Lb‘\c(;\
a)> Qi

Different sized objects align
by their low-order address
bits. A 16-Byte object aligns
at addresses w/ last 4 bits
all 0; 8-Byte objects align w/
low 3 bits all 0.

Which objects are relevant
depends on context of
discussion.

For aligned objects, we can
think of the bit fields as
indicating which object
within a larger object. Here,
4B words within 4-word
blocks.

A large object, e.g., a page, can be
thought of simply as containg some
number of bytes. Here, pages align
w/ 6 low bit equal 0 and page size
is 64B. Of course, we can consider
the page as having 4 4-word blocks
or 16 4B words.

For a DM, some number of bits are
index into the cache. Here there
are 4 words per block. The number
of entries determine how many bits
are used for indexing. If the DM
has lots of entries, the index bits
can include some of the low-order
page# bits.

2 Communication between a
reyt O CPU and L1 looks just like
Index LXe DM the CPU-Memory
Cogan Y communication when no

seadk ::‘; Fron \D\a()&cache is present. From the
PN CPU side it looks like a
memory interface.

We can think of aligned, cache-sized
objects. The upper bits would be thought of
a the C#, or which cache-sized object in
memory. The cache index is then which
block within a cache-sized object. The low
bits are the offset into the block.

EY enbeies =]
W/ |

Y 'b/<.\) (— /[‘i(ﬁosoococq‘_——
28 o AP

Blocks with different C#'s but the same
index collide. The C# is the tag. Here there
i C are 64 entries and 6 index bits, 4
Yword/block and 4B/word; 1 kB per C#.
Alignment is w/ low 10 bits 0.
b
If the discussion context was L2 instead,

W then the bits considered C# and index
C g would shift according the L2's size and
7 —— number of entries. Offset bit fields would be
A % by block/word sizes.
W
o\ ¥, b ord) Note that the degree of associativity has no
\,\436 . 30)(effect on these numbers. n-way associatvie
Lot has n DMs: it allows collisions to be
accomodated. The total size of the cache is
T,\% independent; the DM size sets the
\ assignment of bit fields.

\/ N ™
[
Given an address, accessing the item
=

involves the following (for read, write is a

2 Tage | Wecht little different:

-- index into the DM (or mulitple DMs)

-- get the cache line (tag+block+otherBits)
L§ -- compare the two tags

-- use W# to select which word in block

-- send word to CPU (or write data to word)

