

Big blocks : spatial locality
Big cache : lower miss rate
Associative : lower miss rate
Write back : less bandwidth
Multiple levels : lower avg penalty

The Environment

---- Long Latency
---- Low Bandwidth

Expand tag storage:
entry for every possible tag

tag == block address, aka block
number, is redundant, eliminate

Block ==> Page
Tag storage ==> Page Table
Cache Data ==> Memory pages

separate into
two parts

I'v got page table issues

--- Where are the page tables, physically?

 ===> memory? SRAM?

--- If in memory, how many memory accesses to read one data item (ignore cache)?

--- If page tables are read/write

 ===> Can my program rewrite your page table (or my own, accidentally)?

--- If page tables are not read/write, how do they get pointer values?

 ===> Need protection bits per page: Kernel Mode 0: R/W, User Mode 1: no R/W
 ===> Where do protection bits go? How are they accessed?

--- It's nice to share memory, but why bother?

 ===> Principle of interleaving: long latency task? Go find other work to do.
 ===> OS has work to do, too.

--- What about I/O?

 ===> Is that done using virtual addresses? Memory mapped I/O device registers?

--- Speaking of I/O, what about long, slow I/O for disk blocks (pages)?

DMA is a processor, just does what PROC would have done.
PROC does other work (interleaving).
BUS-MASTER interleaves PROC and DMA requests

All User's have OS in same virtual area.

All virtual OS space is mapped identically for all users.

OS can turn off virtual addressing to access physical memory.

PTBR holds physical address of PT for fast access.

After mapping,
page tables can be
anywhere.

PTBR set by OS,
fast lookup of PTEs

Set dirty bit on write.

Set accessed bit on read or write.

Clear all accessed bits every k ticks.

Page Miss:
 --- evict page (ordered by preference):
 ---- 1. dirty == 0, accessed == 0
 ---- 2. dirty == 0, accessed == 1
 ---- 3. dirty == 1, accessed == 0
 ---- 4. dirty == 1, accessed == 1

get addr of PT

get PTE

get data

(NOTE: operations in hardware,
not instruction execution.)

Speed it up:
1. PTBR <== Page-table-location-pointer
 Do this once at program startup

2. Cache PTEs!

Read PDE, find PT disk address; Read PT page from disk;
Restart;
(after restart: becomes Case 1/1)

Page fault for PT as in case 0/1;
Restart;
(after restart, becomes Case 1/0)

