Date sijhe] T T T

. Problemp llfe) JLUN&W)&P)LUNA.“OMAP
T . umit 1 umit 2
— Each functional unit used lonce per cygl;)

— Most of the time it is sitting waiting for

! |) rits wiit wdit
e Well it is calculating all the time, but it is(waiting for valid data do de

— There is no parallelism in this arrangement

e Making instructions takan make machine{fasteb!?!

— Each instruction takes roughly the same time
 While the CPI is much worse, the@ock freq is much higher)

—(Overlap executioﬁ)of multiple instructions at the same time
e Different instructions will be active at the same time CPL T CR r

— This is called “Pipelining”

— We will look at a 5 stage pipeline p n N
* Modern machinehave order@cycles/instrucﬁon) ’7/’ + nepr ('/cz)

—> 1\CR/CF’J:)

Sequential Laundry hum, ... 7

6PM 7 8 9 10 11 Midnight

T Time

PR P B B e B Bl e b Bl s I Y
" 30 402030 40 2030 40 2030 40 20 b
5 7 =7 /‘LT ab /7174; 90”;;), :/5
I © gl ke

. éhfS V’oéu

) s
? S < éérx\
1
| ©
@

C. Kozyrakis o e 38

Pam”a s o> Overla

6PM 7 8 9 10 11 Midnight ;
| ‘} Time o ﬂd. (WCZ:
‘— |— ‘— ‘— 15 aob //'nis/w 90 mins = 1.5 /7r5

) f/wxfravemu{l‘ ?

A o 57 3.5 | ‘) M?L
(:) e <4;01)s/3.5‘ érj\) G)I/"

f/?ferzo = /a}/ 3.5
D

P

0

bu/ no CRT

szZyrakis] 39

Néql Gloes AWZF)&QQ ngw Sm&?

‘I‘hronL,au+ T

Pipelining Lessons

Pige £l
6 PM 8 9 . Pjpelining‘doesn‘t help Iatency)of
i R single task, it helps throtghput of

| = i Time entire workload
M‘ E’I_\)_) ‘_ ‘_ ‘_ ‘_‘ * Multiple tasks operating
30 40 40 40 20 imultaneously
]‘————-D . M%ﬂ speedupé Number pipe
@ pipe drain stages
¢ Pipeline rate limited by slowest
pipeline stage
B [e Unbalanced lengths of pipe
o (T stages reduces speedup
C G d ?‘ e Time to(fill”)pipeline and time to
.® it educes speedup
Al > £
v 65 pire fol| 7)/ 7:
k.

. Instruction Fetch
® instructi 2 (slowsest im7zrr>

— (Fetch\the instruction from memory

—«{ Increment the PC

. RF I Reglster Fetch and Instruction Decode
Execute Ca‘c aJJreS; P,(_)(STﬁj(’J

— Calculate base + sign-extended offset

. Memory
- the data from the data memory

. Write back
- -the results back to th reglster file

H C}f:le 13 C}cle 2 Cu‘le 34 (\cle 4 i Cu‘le i
—_— — —_— — — —_— I
T e I A e A (%)% 2005

___=\

C. Kozvrakis
(Genera Q N e\ We s
15
—> :
. i ponlloge Ly § Pipelined Circuits
PO
(Fhroughpid= 1/te; = (~J° \ reglsters to hold H's Input stable!
(- :
(We can't get the anﬁw.erf'aster, but
are we making effective use of our

Q (_ | T hardware at all times? ! Now F & G can be working on input X, ,

2 : —>| 15 while H I performing tte computation on
X X X. We've created a 2-stage pipelre: if we
F(X) 2 X & ™ P00 have avald input X during clock cycle |
— F[}l{} i valld during clock + 2.
G(X) 2 E ()2
P(X) OO 2

— s Suppose F, G, H have propagation delays of 15, 20, 25 ns and
F & Ghre“id", just hiliing their outputs we are using ldeal zero-delay registers:

stable whilgH performs its computation latency throughput {
unplpelned 45 1/45 oxiTs
s 2T € 25 5 2-stagepipeline %0 1125 per
woraeh, I!ﬂtur\ g.-

T$20+1f T =25+28 =50

=Y Cv:i_;f %_ﬁﬂl
Yz 5

different
Pipeline diagrams

L Conslder a BAD Job of pipelining;

i r@ [~ Clock cycle * xJ. | - —)
_@-‘- [i+1 l+2 1+3 K —] 2
e il
@ Input X X1 Xz LIS “an
5 ‘ y 4—- - B (
m] A X
s F Reg thm.l FX.q) | FOteo) — (2),7;
2
i GReg P 6(X) | |6(Kun) | GX..2) For what value of K Is the fallowing circuit a K-Fipeling? ANSPOHE
i
Problem:
HFReg HRX) | H(X,.q) [HX,.2)
Successlve nputs get miced =4, B{A[K,). Y. This
- N\ happened because some paths from Inputs to outputs
The results assoclated with a particular inptt data have 2 registers, and some have orlly 1!
moves diagonally through the diagram, progresaing This CAN'T HAPPEN on a well-formed K pipeline!
through one pipeline stage each clock cycle.
' pe . ‘b2 ich 3
¢ jobl b2

A pipelining methodology

STRATEGY:

Crraw h Al crosses every sutput Focus your attention on placing
:lgt.he .:Ilrl.:.:IIt-. EII::IEmarI: the endpeints pﬂ?ﬂllninﬁglﬁtﬂrﬁ arou tl"lﬂ%
patmes. slowest circult elemente) 150k im feon

(BOTTLENECKS). other c)elqa s
antinue to draw new lines batweaen

the terminal peints across various
elreutt connections, ensuring that
gvery connectlon crosses each lingin
the came direction{ These lines L)
demarcate pipeiing s tages. —

Adding a plpeline reglstern at ave
polnt where a ceparating line crosces 3
(Cconnectionywill always generate a valid

pipeline. (

!

4?

Tndudbie prof] Rey
sinqus o odsd me coned ,;,.f.,}, b FE

are correct)(/l'pHop

Cut-set

)(/fp Hop av PG}S axe arreZ{'

STABLE stible STABLE Stable
N pu'}s ! ou +Pv "I's IN Pu'}s | 0 u+pv+s

Befme Tick Min Tick

Plpellned Componsnts

OBSERVATIONS: ‘s
* 1-pipeline improves neither
Lor. Plpelined systems can be
* Timproved b hlerarchical:
combingtiong
allowing faster cloc * Replacing a clow
combinational componant
* Too many stages cost L,
LATENCY | THROUGHPUT don't improve T with & k-pipe version may
241+ Incraase clack frequency
4 14 * Back-To-back register) are + Must aceount for new
4 174 i Illl m‘l“'l'l'ffim ESEF’ pipeline stage In aur plan
Plpeling we Fed.
2+t ’ﬁ- 112 4-stage pipeling, thruput=1
2+2’+ 2 L
é 1/2

SPH'A m L “/ T=i

?How?
1/; ov

Circult Interleaving b, | \ b
T ey

version of a slow

] C(X,}

ED g

batwesan 0 and 1 (‘
on each eleck

Wah=30 ey =2Q%30
]ods And a little parallelism. ..
2 \\ pazrdle.(pipes ‘\'/ l'n"érpaﬂ/(

Step 1: We can combine interleaving
and pipelining with parallelism.

LR . =y=y=g AN

\
| 230 =115 load/min

miter l(mlek o R
Step4: (IS 02 T sq

E't-E'FE:

'Drj(’.\'S

IS’:Z?L: é

'/40 o

e
30

1R - Pledemim. 77

(y: 2 J"’bs

Control Structure Alternatives

(synchronous, globally-timed:
ntrel slgnals (2.4. loead enables) "
From FSM controller « I" /]
Comgpol — .
Synchronous, locally-timed: = Loglc
Zlrzulery, B cantrals
flow of data: . L | Xy LT
here'sX | | |
“here's K°
g0t 1 got X fo ! \
a F U N A
gynchronous, | ted pystem using transtion signaling:
XN N e X
h:::;x heresX — = s W
. WS 7 %
E004 - Spring 2009 EEDS 128

Control Structure Taxonomy

T/0 busses w/ Jk

Acﬂ use Siane ché

or he (|f°k3,
bm)‘fena’m‘(' "QWLS ();%-tum) >

5/00\/ I/O JQVI’({, (fé«ﬁ
l‘“’/ HS Pro-l—acolf Loa‘L\

Easy to deslgn but fixed-sized
Inter¢al can be wasteful (no data-
dependencles In timing)

Globally Centralized clocked

Timed M generates all
control signals.

Large systems lead tovery
complicatad timing gemerators. ..
Just say na!

> (o) /

Glob a|

St-art and Finishje Ignalﬁ
Locally
Timed

asynchronous otart

generates asynchronous

m perhaps using local

=
=)

genaraf-& by each major
ﬁubﬁystem
synchronous! ywlt aba
slr:lal:
Thi:bss.t way to bulld large
systams that have

Indspendently-timed
BI04 -Gprg 2005 COMPONENES.

E0a

\ clock).

The “next blg ldea” for the last

several decades: a lot of design
wark ta 4o In ganeral, bt extra
work Is worth I in speclal cases

|08 - Aloadiing 255

O

Data Dependency Graphs and Pipelining

--- Multiple jobs

--- High throughput

--- Is parallelism as high as possi
--- Is timing data dependent?

ble?

Making 4n-bit multipliers from n-bit
ones: 2 “Induction steps”

a.bs | a,

a b,

azbs
I 35b5 | ﬂzh‘z H a
azb

Lasb, |

aghb,
azb, | a.b, \

I agh, |
1b4 I aghg |

a,b

-+ azb

V) vy
MJ Ma m, Mo
Design of 1-bit multiplier "Brick":

add

Array Layout:
- operand bits bused diagonally
« Carry bits propagate right-to-left
+ Sum bite propagate down

Brick design:
« AND gate forms 117 product
« 2-bit sum propagates from top to
bottom
» Carmy propagates 1o left
Wastes some gates... but conslder
(say) optimized 4x4-bit brickl

£l

Here's our combinational multiplier:

What's its propagation delay?
Ccavy 'a a, , Malve (but valid) bound:
<+— as b b, » O(n) additions
. ab. | b, b rd « O(n) time for each addition
. 2
oo by | s b [a, b T ba-| Hence 0(n®) fime required

EIFSADTART)
| |a:b1|.aabc,||

L] aabﬂ[
; l b
\4

On closer inspection:
- Propagation only toward
left, bottom
* Hencd longest path bounded

by Iﬁray*.
O(n+n)

<
Cruz F?H FA |— C, > i:é;{']L r/:lgt/H{ ?L/Ioéy X

Sk Sk
V\C/Co{umn SUMS

Breaking O(n) combinational paths

&
LONG PATHS go down, £o left: N ar

» Break array into diagonal
slices

a4

» Segment every long
combinational path

GOAL: © (n)stages; © (1)clock period!

oA
oot
w&‘zs
= 5‘15+o]1L

L0G - Wadtick

Multiplier Cookbook: Chapter 4

Sequentlal Multiplier:

- Ee-uses a single n-bit “slice” to
emulate each pipeline stage

- aoperand entered serially
- Lots of details to be filled in...

Stages: 1
Clock Ferlad: © (1) (constantl)
Hardware coct fornbynbits: @ (n)

Latenzy: @ (n)
Threughput: @ (1./n]

D04~ Gpring 2000 503 104 - Wubiphers: 22

Can Pipelining Lead to an Arbitrary Short Clock Cycle?

¢ Min clock cycle = longest combinatorial dela +@

¢ Pipelining reduces the combinatorial delay
— Less work per pipeline stage

- Ideally,reduce delay to 1/

— Best you can achieve i@CIock cycle@FF setup + clock skew

. ‘ Diminishing returns|from ever longer pipeti

« Imbalance between stages also reduces benefits from subdividing

¢ Even if you could continuously improve clock frequency
/‘\ —(Power consumption oo Frequn%f

1-cycle MIPS processor
--- Harvard Architecture (two memories)
--- clocking PC initiates cycle

PC [31- 28] Instruction [25-0] 00

Instruction [25—21] Read /_—\6
s e P register 1 Read x
Instruction [20— 18] Read data
register

2
Fagisters goag

Instruction
0
1 data 2

31— Read

data

Write Address

o
——'"—S‘Wﬂk_,_ E register
Themmor i
¢ V Instruction (15-11] | * Write ata
data memory
Write
data
Z 00 Instruction [15—0] & 1 sign 132
extend

Single Cycle Processor Performance

* Functional unit delay
— Memory: 200ps

— ALU and adders: 200ps -/2
— Register file: 100 ps /05' = /d Sece
Instruction Instruction Register ALU_ PEIC] Regi_ster Total 'M[/x /g/d%} C/ozé
Class memory read operation memory write
R-type 200 100 200 100 600 /
load 200 100 200 200 100 800
store 200 100 200 200 700 ._L = /Q(6/7'
branch 200 100 200 500 /T Z
jump 200 200 chek d &ns

e CPU clock cycle = 800 ps = 0.8ns (1.25GHz)

. Kozyrakis

34

EEANRK Whintar 2010 1 achrs 2

g okl by cpecse

s |nstruction Mix Instruction Instruction Register ALU Data Register Total
Class memory read operation memory write
- 45% ALU
= 25% loads

ps > 0.4 ns

R- 200 100 200 100 600
7~ 10% stores type

load 200 100 200 200 100 | (200) 0.%
— 15% branches

store 200 100 200 200 (700 0-7
—\>% jumps branch | 200 100 200 {500) 0.5

jump 200 (20) 0.2

« CPU clock cycle £0.645% +(0.9x25% 40.7)x10% «0.5x15% 5%

=0.625ns (1.6GHz)

whit ﬂ'f’ﬂ&)vf 1

eu-old

Pipelining Load jw

e Load instruction takes 5 stages
— Five independent functional units work on each stage 84LL\ 5Jr AJ e

¢ Each functional unit used only once
— Another load can start as soon as 1°t finishes IF stage

buS}

- /_/_\
— Each load still takes 5 cycles to complete +
— The throughput, however, is much higher 1 (’}oL 208
Pen o.tc{e.

Cycle 1 Cycle 2 CycleSE Cycle 4 ECV(‘]E 5 EC}-‘(‘]& 6 EC}-‘tle 7

vt T TN e N O T T e N = CPL

B N _ 1 JOL

1stlw) IF RE/ID | EXx | MEM] wB

2nd lw_ E 1 C"‘"
s NN - 5 o

Fipe reg sfer §

N\

MEMAWE

