Cost per unit

Manufacturing costs drop as expertise grows, for that process

- -- better methods
- -- better equipment
- -- less waste (time, materials)

Yield = 1 - waste

- -- #(devices sellable) versus #(devices produced)
- -- #(devices sellable) versus (cost to produce them)

DRAM Unit Volume by Generation [37]

Standardization / Volume ====> market acceptance of innovations

Description	Туре	CU	Original \$ /	Current \$ /	% Reduction	Aug 2006	Oct 2007	May 2008	Oct 2009	Feb 2010	<u>July</u> 2010	Sep 2010	Nov 2010	Nov 2011
Small - "the original"	m1.small	1	\$0.10	\$0.085	15%	\$0.10			\$0.09					
Large	m1.large	4	\$0.10	\$0.085	15%	<u> </u>	\$0.40		\$0.34	-	— Pr	ice		
Extra Large	m1.xlarge	8	\$0.10	\$0.085	15%		\$0.80		\$0.68		Re	duction	S	
High-CPU Medium	c1.medium	5	\$0.04	\$0.03	15%			\$0.20	\$0.17	/				
High-CPU Extra Large	c1.xlarge	20	\$0.04	\$0.03	15%			\$0.80	\$0.68					
High-Memory Double Extra Large	m2.2xlarge	13	\$0.09	0.077	17%				\$1.20			\$1.00		
High-Memory Quad Extra Large	m2.4xlarge	26	\$0.09	0.077	17%				\$2.40			\$2.00		
High Memory Extra Large	m2.xlarge	6.5	\$0.12	0.077	33%					\$0.75				
Cluster Compute	cc1.4xlarge	33.5	\$0.05	\$0.04	19%						\$1.60			
Cluster Compute Eight Extra Large	cc2.8xlarge	88	\$0.03	\$0.03	0%									\$2.40
Micro	t1.micro	0.9	\$0.02	\$0.02	0%							\$0.02		
Cluster GPU Instance	cg1.4xlarge	33.5	\$0.06	\$0.06	0%								\$2.10	

CPUs, Chips, SOC

Si ingots slicing - waters

dicing

masking, etching, doping

Circuit testing

Pad Bonding

hoard printing mounting

Pin Packaging

encasing

what's inside?

i7

yield
$$\simeq \frac{\%(good wafers)/\%(wafers)}{\left[1 + \frac{\%(defects)}{c m^2}(A_{die} cm^2)\right]^N}$$

Curre fitting for particular process >> N & [11.5, 15.5]

P5


```
300 mm Wafer
   *(defects) \approx 0.04

E function of time + volume
                                                         Adie = 2.25 cm² => 109
                                                          A die = 1 cm² => 424
                           embedded CPU, 326
                                                   printer Controller
   P5 Sandy Bridge
                                                         0.04 cm<sup>2</sup>
                                 O.1 cm2
        2 cm2
         $50
                                                         $0.1
                                 #13
                                                                       Amortized Costs
                                                                        Mask = $1M
Die size = *(Transistors) + *(pins)
                                                                         ⇒ reconfigurable
gate arrays
+
Volume 1
                                                                         Redundancy, e.g.
 Customization 1
Warehouse-Scale Costs
 Narehouse - Scale Costs

Cost computing = Cost equipment time + Cost power + Coststructure + Cost # Time + Cost repair
                                                         (40%)
                            (60%)
                      (Computers + networks) + ( other
to our purposes
                      = #/wafer
*(dies/wafer) (% good dies)
```

 $\left(\frac{A_{\text{wafer}}}{A_{\text{die}}}\right)^{2}$ $= \frac{1}{\left[1 + \left(\frac{\text{defects}}{\text{cm}^{2}}\right) \frac{A_{\text{die}}}{a}\right]^{2}}$

E. G.

CMOS power and energy consumption

- 1. **Dynamic:** energy converted to heat due to switching a logic gate's output (0-1 or 1-0).
- 2. Static: energy converted to heat due to (steady) leakage currents.

E.G.
$$C_{\text{Total}}^{\text{new}} = 0.85 C_{\text{Total}}^{\text{old}}$$

$$\frac{CR_{\text{new}} = kV_{\text{new}}}{CR_{\text{old}} = kV_{\text{old}}} = \frac{0.85 \text{ V}_{\text{old}}}{V_{\text{old}}}$$

Power_{new} =
$$\frac{\binom{1}{2} \binom{\text{new}}{\text{total}} \sqrt{\frac{2}{\text{new}}} \binom{\text{R}_{\text{new}}}{\binom{1}{2} \binom{\text{C}_{\text{rotal}}}{\sqrt{\frac{2}{\text{Notal}}}} \binom{\text{R}_{\text{old}}}{\sqrt{\frac{2}{\text{Notal}}} \binom{\text{R}_{\text{old}}}{\sqrt{\frac{2}{\text{Notal}}}}$$

$$= \frac{\left(0.85 \ C_{\text{ToTal}}^{\text{old}}\right)\left(0.85 \ V_{\text{old}}\right)^{2}\left(0.85 \ CR_{\text{old}}\right)}{C_{\text{ToTal}}^{\text{old}} \ V_{\text{old}} \ CR_{\text{old}}}$$

$$= (0.85)^4 = 52\%$$

$$\frac{\text{E}_{\text{new}}}{\text{E}_{\text{old}}} = \frac{k_{\text{switches}} \text{E/switch}}{k_{\text{switches}}} = \frac{k_{\text{d}} \frac{1}{2} \text{C}^{\text{hew}} \text{V}_{\text{new}}^2}{k_{\text{d}}^2 \text{C}^{\text{old}} \text{V}_{\text{old}}^2} = \frac{(0.85 \text{C}^{\text{old}})(0.85 \text{V}_{\text{old}})^2}{\text{C}^{\text{old}} \text{V}_{\text{old}}^2}$$

$$= (0.85)^3 = 61\%$$

Static

? Natio from year-to-year?

$$r_1 = \frac{5}{1}$$
 $r_2 = \frac{7}{5}$ $r_3 = \frac{20}{7}$ $r_4 = \frac{30}{20}$ $r_5 = \frac{60}{30}$

$$r = \left(\frac{n}{\prod r_i}\right)^{n} = \left(\frac{60}{i}\right)^5 \approx 2.3 \text{ pm 5 yens}$$

Prediction for 2015?
$$\overline{r}(60) = 2.3(60\%) = 1.38$$