= Bandwidth or throughput
= Total work done in a given time
= 10,000-25,000X improvement for processors
= 300-1200X improvement for memory and disks

» Latency or response time
= Time between start and completion of an event
= 30-80X improvement for processors
= 6-8X improvement for memory and disks

PM{&MMCQ \ C ayn/ommé Mach wnes / 57!7('6}!\5 o

¢ Response Time (latency) = + _t
- How long does it take for my job to run? A)/\Ig/l)ﬂ Case [worsl Case

— How long does it take to execute a job?
- How long must | wait for the database query?

* Throughput = o\/

— How many jobs can the machine run at once? What do we "really"
- What is the average execution rate? want to know?
— How many queries per minute? ﬂ/\]‘é_, - Which system
works best in our
T; K larger system?
mc:

--- What costs can be

. i /,
Hepsed Time Yol ok traded off?
— Counts everything (disk and memory accesses, /0, etc.) ————7 W

- A useful number, but often not good for comparison purposes

Depends o foad,
disk 1@100“'/ more st'l'mCl'

» £.g.,0S & multiprogramming time make it difficult to compare CPUs

¢ CPU time (CPU = Central Processing Unit = processor)

— Doesn't count I/Q or time spent running other programs

/
— (Can be broken upint an —> Uder ¢pY Jome
I/o

¢ Qurfocus: user CPU time — 77”}16 CPU w_u) 30,,1
— Time spentexecuting the lines of code t atar s g’ob @' 0Wl/}eaj)

— Includes arithmetic, memory, and control instructions...)
wniy => Lalhet> T myhed

Latency vs. Bandwith r'elQ.+!VC Ptr](o"ma.h(c.

Increasing 100000
complexity/density/speed
Microprocessor
|

1.V /L gets worse for each e ¢ T OSSO S er= ool
component. =
2. Vproc /Lmem gets worse = ,
even faster S 1000 S

=

B

=

=

= .

g [o]3] EUSSERS—————_ VAL S—— T V1L

@

=

T

14}

o -

() s B A P> i N T AN b
(Latency improvement
= bandwidth improvement)
1 :

1 10 100
Relative latency imprpvement

— L <{Leu<|a, 1

= Dynamic energy
= Transistor switch from0->1o0r1->0
= 2 x Capacitive load x Voltage®

= Dynamic power
= %2 x Capacitive load x Voltage? x Frequency switched

» Reducing clock rate reduces power, not energy

cpw Clock Cycles = Cpw Tome

* Instead of reporting execution time in seconds, we often use cycles
CPW Tie = < seconds) (cycles\ {seconds)
p Sec asz>
o ’Tc‘1c|e =(.ch
* Clock “ticks” indicate when to start activities:

program rogral‘n\ \ cycle
— 1+ Fe = (O cks /
N time reqb
1 (.,\bc.k Ly f—]ﬁ Jec. C\’c
Cycle time= time between ticks = seconds per cycle

» (Clock rate (frequency) = cycles per second (1 Hz. =1 cycle/sec)

1 A
A GH3 &IOCk = F;e% <9~X \0 h"”) =4 .rc,vlc =(Axlo’ T:E./(Sy
e = /4 hs
= '/l(\,ooo ps)
CR, {-;e% = 4790 f))“

. xecuh’on time v CA(L\CS X —rm’ck ew (‘\s({_

Execution = Clock Cycles| for Program x|Clock Cycle Time

¢ Since Cycle Time is 1/Clock Rate (or clock frequency)

-1
. Clock Cycles for Program _ X C Q\Q)
Executior - = | T
Clock Rate C‘(c.lc
¢ The program should be something real people care about &)§(C C,eS
— Desktop: MS office, edit, compile r'epQ Joloj ? - CR

— Server: web, e-commerce, database or

— Scientific: physics, weather forecasting l')CJVlCL mm((< ?

Measuring Clock Cycles

¢ Clock cycles/program is not an intuitive or easily determined value, so

. % ¥ clej‘
= Instructions x Clock Cycles Per Instruction = ¥ mslr X (WJ inste

X inst
e Cycles Per Instruction (CPI) used often = Z&?quc/t’i

¢ CPlis an average since the number of cycles per instruction varies from £ = i
instruction to instruction
—Eerage depends on instruction mix> latency of each inst. type etc.
* (PIs can be used to compare two implementations of the same ISA, but is not C&J’) n Sff I/C-/] n
useful alone for comparing different ISAs Lo WM%
- Arﬁ‘ x86 ade is different from a|MIPS add
L3
TL
I . ADD vs R
CPLey CPLyips
' ve
@(‘MS'}V X C?Q R Depends on instruction
\‘ \‘ mIX, . .
system configuration,
data
%y les x —E\\s\e

¢ Drawing on the previous equatiw’_\ r\t_\

Execution Time =(Insﬁ‘ucﬂ'ons X CPI)X Clock Cycle Time G‘DQQD

Eveention Time = Instructions x CPI _ pd énsfr (CcP I>
Clock Rate R

. Tc@m\rm@(i.e., reduce execution time) .
— Increase clockrate (decrease clock cycle time) OR CRX\ 5> CPX L:\P)&M&P[
— Decrease CPI OR iz
Voo Reduce the number of instructions T S(T
¢ Designers balance cycle time against the number of cycles required)
5/Mp/(r med

Inste sTrucTon g

Time

— Improving one factor may make the other one worse... SA([l
/a}i'a

Wﬁ .fweef sfe'l‘ j

Clock Rate # Performance

* Mobile Intel Pentium 4 Vs Intel Pentium M CR ol 24 s
— 2.4 GHz 1.6 GHz — = ﬁ -
—(P4 is 50% faster? C KPM '

e Performance on Mobilemark with same memory and disk
— Word, excel, photoshop, powerpoint, etc. T ade Coo»
‘B/.— Mobilg Pentium 4/is only\15% faster

. Whatlsthem e = (’%(MS} (

— ExecTime = IC » CPI/Clock rate

— ExecTime,, = 1.15 ExecTime CPI_
y : Tl’q - icrq(’—Pq'\

— IC*CPl,/1.6= 1.15IC* CPI,/2.4
— CPI,/CPl,,=2.4/(1.15%1.6)=1.3

o T (4

Same ISH
ICP‘i =L CPM
and
CRyy= (15)CR,,

—

CP L _ (M: 1304 = 307 wmne qkS /it
cPL,, (119 m o gn PY

Different instruction types require different numbers of cycles % A
CPI is often reported for types of instructions X" .
7 msteodios
pes

Clock Cycles =) (CPI.xIC))

i=1 M(W CPT 0

where CPI; is the CPI for the type of instructions L m_d'ruQ |67U
and IC, is the count of that type of instruction

To compute ths! overall average CPI\use

%C%le,‘,
n —
L ()
IcC !

MC x]:,ci.
= 2 0L T
|

cel, . @i CPI, (Z/:)} ™ conbibdiom

5 overedl
Instruction Type CPI Frequency CPIl* Frequency M’Z’ CcePr
ALU 1 50% 0.5
Branch 2 20% 04
Load 2 20% 0.4
Store 2 10% 0.2

sum s 1S = (en)CPT
Given this machine, the CPI is the sum of CPI)(Frequency

Average CPlis0.5+04+04+02=15 = Z x?(cycld /47 ﬁfel)/w
L

What fraction of the time for data transfer? b4 c7c/ey
IC

a,\gCPI

)

¢

T““"" _ c‘/ck Lo-st (J) Xk(bjclﬂ LD- 573 @“Cyda Lb) ()Q’(c cls ST)

T —_— = (% c',ce)') TICxCPE

Tr.m ks R ® eyeles
/(]:(&CN[(.]CJ L‘)} (& (,\l(,les STBI .

cycle Time ¢ I<
Oy ICp 4 Ly Il -
[= ze | cer

= [eery 4y + cpl;-,?;,](%s\
= o4 +021(V1s) = VOZ

Speedup

e Speedup allows us to compare different CPUs or optimizations

, CPUtimeQOld
Speedup = — _
CPUtimeNew
e Example \ = l S
7 I
— Original CPU takes 2sec to run a program — Qc‘
— New CPU takes 1.5sec to run a program Tmu = /' {S
— Speedup =1.333 orspeedup or 33%
= Fl:li / = 9\0 /S/ ”/3
wew- o) new I.S

5 T () »*/a®

Does this look like speedup? What do we mean by speedup?

(Whew_l_ ‘5
,§’~%ﬁ_ s — = T’V-’;ew :&o\/new 3%4 (,'3)

- -~

Vo <W°”/ T) —> new b 30/ /mLe/u

Assvming Wold = Wyew e me\u + W\ = W+ (-H)W

XO%UQD\ l
W/ ble
N " / old - panall = mprovz
,SY y T j;««.\l:ﬂ + h[;e%wn‘h"& (“i"e”h' J[’er)
“Cw W/’];IQN OV W \)
= ? - \“}.f L
p A’P ('\/S /T« 0\/‘0 :"K
Amdahl’s Law G\/ new
—— _ — S0 (8.5, =0)
* If an optimization improves a fraction f of execution time by a factor of a
Told 1
Pt = xSl Told A=)+ f/a T - ﬂ/+ (=AW
T f fied T We =00y W =50 Toox
* This formula is known as Amdahl’s Law =W
* Lessons from - /M

— Iff>100%, then speedup =a
— If a>ee, the speedup = 1/(1-f) ﬁ/\ 5PC€> “P W Ws

e Summary o max 70 ﬁ‘-;'ew - %y + /1/
— Make th ast P 3

— Watch out for the non-optimized component
LW+ (-4)-W
= T

Ta CA <= “,:VS (i %
ey Toem (AL (444 0-4) - (% (D) A,

V) 22 ey = = g g
y{%-l-j_) =1 =Agma—mfmm§ "'J:,,M

s o (o) (1 AN

{;Z W) X I)M/meChO?/K{ /ﬂ 4>
b Zﬁ//a 45 /4571'

;507 :P*Sy(l/)

* |fa=100, what is the overall speedup as a function of f?
P P 83 MJe I, CPU,

Speedup vs Optimized Fraction
/ o1 W{M relle [

Speedup
o
=

L 817

! 0 l]:.1 I u:.z l 053 l 0:.4 l (Il5 l Dls l 0?? l 0:. l DlS ' 1 e + "«

raction of Code Optimized

Fract 5‘ Se Z [4
— —> 7

7[cost = 100 - Cast

Neu o

Amdahl's Law Example

e Suppose ain 100 seconds|on a machine, with
responsible for| 80 seconds|of this time. How much do we have to

improve the speed of multiplication if we want the program to rur@l‘imes = ,5/1 7

?

faster?"
Tit = Tt * Tyt = 20 7300 = 125 fod S = Taa
"
—~ol) D
\4
e How about making it 5 times faster? S =5 ¢ S = T = =L
S

P\v

X7 = X(H+2+1) =

Y= Q0...011]
00 00
+ Xn 'X'n—l "'x.xo +LA)
$/ S ... S¢S g/
sh_l__&i
+ %,\ %n—l "'x.%oo +@
Sha Sl SISSE '
shfy

+ x(:\—'x'n-l '~v7(.| xooo +£€l
S S 855 T

h+2 Tngy 1

What if y has a 0 bit? Then add 0 instead of
shifted x: e.g., y =0...101 add 0, not B.

~ew Y:Tl"ﬁ

3 ol
x 0 \0l

1ol

+~ . }jo vl ..

O ool !

Goss\\ﬁ\ﬁ coams})

ADDER

Delay is longest
path.

2 levels per MAJ,
n bit operands.

2n gate delays until
result is ready.

\\++++%}

INT MULTIPLY: S=x"*y

S: partial sum, initially 0.

LSR: partial products, initially x.

RSR: initially y.
Z: all0s
<—-S[ﬂpf LSK =
O mhawX) [O ¢ 0 |
Z(nn)
2(nn) —% |
RSR
D + y'lkjl\--l“' °
v shift —
Snﬂ Szn 5| 5'o s
T
X ol?\ l\ muﬁ‘b'.‘;%
o
g e st
2 oo ? 8 ?91 Yokt (on) e Vo=
© 000000 « 1-shdl () V=0
®101100€2—SL;\¢+Q3 “«— Y, = |
00 00 900 < 1-shiffl) &— Y3 =0
o1l 1 01 1!

Tme

: (LOU) @\f"/‘g J

We

:bw ﬁﬁ% the shdted (0u)
adl 3 enoea o(kpwdm; o chethe

Yo o 1 o O

C.it
\f‘:\.ﬁ\/ FA, -b I
3-[3"

Shift chis'Ter 'De]a\\ =1 (a4l s'faja tn Pw\dﬂb@)

D, D, D

Q. Q Qo

ovel® ddag : (o shifl)x (2n deligappce) = 277
T prove el ° T{EU} SVt Reg(vxe W\F]

< ‘-B'\Jr) Q ©
yit)
" 0

X-2 =
y
(VSc Recurs\vel@
N
2] 17 L
al EE o oyt Ay fin), s,
e Up -t 439+ 4)-bid muT Jdmol:
Y2 Suw
J% S*L,. ' Finy = Yn)+£(%)

f('n)= In + £(%) = g,\»«g(%_)\»F(%) =P""('/z*'/v*'{7*"'\ﬁ|én

time improvement: 3y = |&n Areaincrease: 7y =>1 Al = TA(%) + H(n)
[} YN
et 2@ = 2"+ a'@) = 2 h g =2 =y O g

)51 =1
}j‘) = _ W/an _ T, _ Ws/vs-ou W\
vera - = = = —

‘Vol T —rc
OUR Keggi(e\mm:E W/ oM " w’/ L WVVP_M
- 0.0 + (o.g)W /2L ——
/ o4 /‘/P » Vp_ou = Vool = Vr—»ew
(OL)%oA + (.)/,S'V,,oIJ VP"MN .-=‘5; %-‘OH

) %o.:t t °'%§{,> =t

- g
:‘:PO.Q\S-—O-Q*O/‘SIF
—_ . ".:-0.8 0{ =!/a-= =/—§'I
b 005 /19; > g 7 =6

~

make & uz un
dds o 123-bi}

) | N _ /.’)_ =5 Possible ?
)-Zjllrd]—ob = /("'2 + VOO) ! "%~ —QLM\W\EE. MULT MQ?

4
Lgiefdl = 5 ? l/[o.z + 0-8’/51?) = 5’ Can we?

wlu\ e(se. c.o\:‘a\ we Tf‘é‘a. h- s1‘aa,e Pefme

l Nsuﬁ S/'JCIL

Ael% =Yy (ZV“L"’L ADD)
(32-5;{'): Can WX
¢ 3(2’) Uy, [kccp {]
32-mulT L/ (2_!) M '
[47Lchc; = Ynx(n) = Tn*

AV\JH\(’X APPFO&Ch) Back To s%ua,re 1 ‘

Camm-sine idder

X0 ¢, K10 ¢ XoCe

L¢J“H’_L;J%
]« ﬁi?:{g

S
z AND M
paﬂﬁaj? ProAUC'}S
= n(.l)
3 2ll
32- MULT /él‘ =32
OThey Tdeqs © V({) | (02 + 0.4%2)
o fusf? = e &h)/z)
" ROM HOU asts 0 0
@A > Aok — = Vo) = l%r-n)“%"“’*"/?
im
2n-bit
o Do wob
_Vv 9~“ . .
[AxB] . (}e\ag? amith o
W? p“’\“qu,
‘ co)ném@ rcsuH's

(Conbint) ou?

Evaluating Performance

e Performance best determined by running a real application
— Use programsfexpec ed workload

« e.g., compilers/editors, scientific applications, graphics, etc.

i g envicomert ©

* Microbenchmarks
— (Small programs) synthetic or kernels from larger applications
— Nice for architects and designers

— (Can be misleading

e Benchmarks

— Collection o hat companies have agreed on
— Components((programs| Inputs & outputs measurement

— Can still be abused

< Bl conpilen opﬁ'»fyeb Ja bonchmonk ?
= ‘Bw‘)}‘}" = f"UPS w“l’x?
The SPEC CPU Benchmark Suite
(System Performance Evaluation Cooperative)

Benchmark name by SPEC g

'SPEC2006 benchmark description SPEC2006 SPEC2000 SPECSS SPEC92 SPEC89
%QC.
T GNU C compiler gee
Interpreted string processing perl | espresso
Combinatorial optimization -— - mcf li
GQ Block-sorting corr bzip2 COMpPress eqntott
\ Go game (Al) go vortex go sC
Video comprassion h2édavc ozip iipeg I
Games/path finding astar eon masksim
Search gene sequence hmmer twolf
Q M s"“\ -—» Quantum computer simulation libquantum vortes
Discrete event simulation library omnetpp vpr
Chess gama (Al) sjang crafty
[\AL &(SQ.*/V XML parsing xalancbmk parser
X ? CFD/blast waves bwaves fpppp
Numerical relativity cactusADM tomcaty
Finite element code caleulix doduc
Differential equation solver framework dealll nasa7
Quantum chemistry gamess spice
EM solver {freg/time domain) GemsFDTD swim matrix300
Scalable molecular dynamics (~-NAMD) gromacs apsi hydro2d [
Lattice Boltzman method (fluid/air flow) Ibm mgrid su2cor
Large eddie simulationfurbulent GFD LESlie3d wupwise applu waves
Lattice guantum chromodynamics milc apply turb3d
Molecular dynamics namd galgel
Image ray tracing povray mesa
QQL\(\ Spare linear algebra soplaex art
s@ ~——) Speech recognition sphinx3 equake
CQB \ Quantum chemistry/object oriented tonto facerec
("c ‘Weather research and forecasting wrt ammp
Magneto hydrodynamics (astrophysics) Zeusmp lucas
fma3d
sixtrack
I P B I

2007 Ehewiar, b ity reveeerd

. Kozyrakis EE108b - Winter 2010 - Lecture 5

Other Benchmarks

e Scientific computing: Linpack, SpecOMP, SpecHPC, ...
* Embedded benchmarks: EEMBC, Dhrystone, ...
e Enterprise computing
— TCP-C, TPC-W, TPC-H
— Speclbb, SpecSFS, SpecMail, Streams,
e Other
— 3Dmark, ScienceMark, Winstone, iBench, AquaMark, ...

e Watch out: your results will be as good as your benchmarks
— Make sure you know what the benchmark is designed to measure

— Performance is not the only metric for computing systems
e Cost, power consumption, reliability, real-time performance, ...

Summarizing Performance

. results from multiple programg/into 1 benchmark score

- Sometimes misleading, always controversial...and inevitable

- We all like quoting a single number

AM = li:(I/Veight!.) -Time,
N

i=1

HM = 0

* 3 typesof means
- Arithmetic: for times

— Harmonic: for rates < (Wé’l'ghl‘i)
. . 1 Rate,
— Geometric: for ratios [,1]
. n N
Punk o T st GM=| T1 Ratio;

n
(l'r’b“'(hx"‘G:)X =

We normalize by using a reference machine R to get the

R = (TR) |0 TR \ speedups w.r.t. benchmark-1 and benchmark-2 (b-1, b-2).

\ 1

T 10T Suppose R's time on b-2 is 10 times its time for b-1. (We
SA-R\ = = SA-gl I ' can always express R's times in terms of one of its

100 % benchmark times, no matter how many b's there are.)

T . :
Sl}-R‘ S SB-R,_ = “’__T“\ To combine our speedups w.r.t R, let's try getting a mean

200 \ of these for A, and a mean for B, then taking the ratio of

those mean speedups.

— IR o
S, =% (L P T 4+loao
AR Z\ 180 Y SA“R /0017’ ~ | ?
> = T 2 _ (f)(5s) 24
- Sa. + 2000 .
SB-R = 1(} —E‘. + lOT’l\) B-k. / (l > y+lool z 1*°
200 | 200] + 200° — Yy >0

This doesn't seem to have worked very well. The effect of R can make all the difference: if R's
time on b-2 had been one-thousandth of its b-1 time, the result would have been an overall
speedup of 2. Let's try a different mean, the geometric mean.

ﬂﬂ]
"l’ B '400 - l"o

SA-K = G (SH,) SA-&J

SE_K = &(SB'R, ; SB-Rz) = lOTR’: (\r‘; T{{l)
200 - ¥ 10
See (BW[T, T2
P\"K _ 0 'R, 8, ° 1Ba ~ 07 rec&_“ _ y
= } a2, Spe,” 4
SB—R (m ’TR‘) -rN ..rA;
weights on R's times cancel. L,
---- (A's point of view): S_avg in[2, 0.25] ===> 30 % slowdown ﬂj M A/t
- (B's point of view): S_avg in[0.5, 4] ===> 40 % speedup m:is‘}e/rcf

The real world? Suppose job mix = (n1 runs of b-1) + (n2 runs of b-2)

200+4 /7‘/4)4’?

To 4. i 700n, + M2
S _ Mg le ' 2007~
AB ﬂwT— "~ TJoon +4Yna lootfa —~ 3,4 =>9
]
R AR (2="%)

Sanity check: Given our result above, what a does GM appear to assume?

2R A v Yy D (zec+a)f =(werta)3 B 00 =3a
(oo + ¥g) 4 5 &

n, = 42 n

For every short job (b1)
we do 62 long jobs (b2)?

What if we hadn't taken the SQRT in GM?

Sk - é: = (1001.432 = (o +4a) £ 4=50

)
— —
M = ;\a where r-=\—”1:‘: N -8 [Q "Gy/-]
o ! 2
v Siv% e (W, + Wa + o Wa) (T, +T, T
W el ek same =
(oo tukes some Time - . W

() (%) (%)
- '/Z (i) (W fw) = s

;

We hane re'Pal(/v»cg, Times :

W W=Z W
1 — W
TR‘ = T'K]]Rz = /Vk-z. [4“%‘((Vk-l ?'CVD:Z :o\{(]
\/\/1 = quova Wz.:k[;{-zq/k a)i - WA/éWL
w, W TR T
Yo MJ % 3,2/ + MQK?& : W\'\'WZ (T&\ K.ﬂ;(zovR\ TR,"\'—YRL
= l/("”°) =/
Wy _— TKL - _‘_9_ =]%l

T +T1 1+10
Rl RQ.

-L %J%’ OV-] 20}{2-2. = GVR
W, = T, Ve T
oy
wz = T—ZGVR R-2.
W, _ w, |
P oo
R-1
- Wa o W, i
6VA"L T
A-2
W, = oW,
____/_1___/-—-—-* (/H\ _ | W)
T‘\? / W, ' - = m (10 +4)
w‘ — -

(4 /[bo lOW./LI. "l " I\ 1\
- I \Nl ’\;\\ ’1;\‘2.
(va - (200*—15

HM (20044‘) .
i SA-B B %/‘VB T ey A

-
Sw\>(>oseJ a.galv\ ; s o b-] amd N, CuNs Jﬁ b, w/ 4= /Yll
(’mPM& M;\(‘ea&, u&cﬂlc‘ " zpm-ro'lma,vtcﬁj Nhé* A M HN\ . Q ?

M
/gmd <200+4) zg = %O:] = 104 (0a+a) = 201 (100 +4s)
= Ha o
A B j66 * A-B

+(04a, = 20100 + 2044
> 2087020 = 7064 a=1
=2

Principles of Computer Design

= [ake Advantage of Parallelism

= e.g. multiple processors, disks, memory banks,
pipelining, multiple functional units

= Principle of Locality

s Reuse of data and instructions

s Focus onthe Common Case
= Amdahl’s Law

. . . .) enhanced
Exccution time ., = Execution timegy X ka I — Fraction g . q)

+ J
Speedup,

Fraction

enhaneed £

1.02 #bytes per frame, time per file (cache, DRAM, ...)

1.03 avg CPI, CR, performance

1.04-05 CPI by class, CR, instr. mix,

1.06 compilers, avg CPI, CR, speedup, CPI by class, peak performance versus
1.07 Voltage scaling laws, C, power, GM, %change,

1.08 dynamic power, C, V

1.09 static and dynamic power, voltage dependence

1.10 multi-cores, #instructions, CPls, execution time, power

1.11 die yield and cost

1.12 SPEC ratio from times

1.13 Faster clock, change ISA ==> fewer instructions executed, CPl vs CR
1.14 Performance measured by MFLOPS or MIPS versus overall

1.15 Amdahl's Law (improving only a fraction)

1.16 Speedup w/ communication costs

