
What do we "really"
want to know?

--- Which system
works best in our
larger system?

--- What costs can be
traded off?

Latency vs. Bandwith

Increasing
complexity/density/speed

1. V / L gets worse for each
component.

2. Vproc / Lmem gets worse
even faster

Depends on instruction
mix,
system configuration,
data

Does this look like speedup? What do we mean by speedup?

What if y has a 0 bit? Then add 0 instead of
shifted x: e.g., y = 0...101 add 0, not B.

INT MULTIPLY: S = x * y
LSR: partial products, initially x.
S: partial sum, initially 0.
RSR: initially y.
Z: all 0s

ADDER

Delay is longest
path.

2 levels per MAJ,
n bit operands.

2n gate delays until
result is ready.

time improvement: Area increase:

We normalize by using a reference machine R to get the
speedups w.r.t. benchmark-1 and benchmark-2 (b-1, b-2).

Suppose R's time on b-2 is 10 times its time for b-1. (We
can always express R's times in terms of one of its
benchmark times, no matter how many b's there are.)

To combine our speedups w.r.t R, let's try getting a mean
of these for A, and a mean for B, then taking the ratio of
those mean speedups.

This doesn't seem to have worked very well. The effect of R can make all the difference: if R's
time on b-2 had been one-thousandth of its b-1 time, the result would have been an overall
speedup of 2. Let's try a different mean, the geometric mean.

weights on R's times cancel.
 ---- (A's point of view): S_avg in [2, 0.25] ===> 30 % slowdown
 ---- (B's point of view): S_avg in [0.5, 4] ===> 40 % speedup

The real world? Suppose job mix = (n1 runs of b-1) + (n2 runs of b-2)

Sanity check: Given our result above, what a does GM appear to assume?

What if we hadn't taken the SQRT in GM?

For every short job (b1)
we do 62 long jobs (b2)?

1.02 #bytes per frame, time per file (cache, DRAM, ...)
1.03 avg CPI, CR, performance
1.04-05 CPI by class, CR, instr. mix,
1.06 compilers, avg CPI, CR, speedup, CPI by class, peak performance versus
1.07 Voltage scaling laws, C, power, GM, %change,
1.08 dynamic power, C, V
1.09 static and dynamic power, voltage dependence
1.10 multi-cores, #instructions, CPIs, execution time, power
1.11 die yield and cost
1.12 SPEC ratio from times
1.13 Faster clock, change ISA ==> fewer instructions executed, CPI vs CR
1.14 Performance measured by MFLOPS or MIPS versus overall
1.15 Amdahl's Law (improving only a fraction)
1.16 Speedup w/ communication costs

