
Using Verilog HDL to Teach Computer Architecture Concepts

Dr. Daniel C. Hyde
Computer Science Department

Bucknell University
Lewisburg, PA 17837, USA

hyde@bucknell.edu

Paper presented at

Workshop on Computer Architecture Education

June 27th, 1998
Barcelona, Spain

Held in conjunction with the

25th International Symposium on Computer Architecture

June 27 - July 1, 1998
Using Verilog HDL to Teach Computer Architecture Concepts

1

Dr. Daniel C. Hyde
Computer Science Department

Bucknell University
Lewisburg, PA 17837, USA

hyde@bucknell.edu

1. Introduction

Students in computer architecture courses, especially undergraduates, need to design computer
components in order to gain an in-depth understanding of architectural concepts. For maximum
benefit, students must be active learners, engage the material and design, i. e., produce
components to meet a specific need. Unfortunately, computers have become so sophisticated that
designing architectural components, e. g., a cache memory, in hardware is not feasible in a one
semester course. This paper describes an approach where students use a hardware description
language (HDL), Verilog HDL and an associated simulator, to design components of computer
systems and explore architectural concepts. To support this approach, the author has developed
web-based course materials which include a manual on Verilog HDL, a paper on how to realize his
Verilog-based computational model in digital circuits and twelve structured laboratory exercises.

Other engineering educators have used hardware description languages in their courses before,
but at a lower level, e. g., digital circuit design or VLSI design. What is distinctive about the
author’s approach is the use of an industrial standard HDL in a computer architecture course.
Students, especially the ones who consider themselves software-types, are able to design and test
hardware, for example, a CPU with instruction look ahead or a floating point adder. Further, they
gain valuable insight into the power of computer-aided-design tools used by hardware designers in
industry.

In the course, we stress that our goal is to formulate a computational model in the Verilog
notation so we no longer need to think in digital circuits. That is, we develop a higher level of
abstraction to think about digital systems that is much more concise than digital circuits, e. g.,
sequential machines. A few lines of Verilog code may translate into hundreds of flip flops, AND,
OR and NOT gates. This Verilog model is precise and concise -- the Verilog notation supplies the
information for both the data unit and the control unit associated with the control sequence. This
approach is basically the one used in industry to design digital integrated circuits, such as
microprocessor chips. The students are told that with automated tools, the Verilog code could be
translated to the integrated circuit masks, say, for CMOS.

2. Institutional Context

The author has course tested this approach at Bucknell University for three semesters. The
approach is used in an undergraduate computer architecture course taken primarily by computer
science seniors. The prerequisite for the course is a traditional computer organization course which
the students take in their sophomore year. The architecture course is organized as three one-hour
lectures and a two-hour structured laboratory session per week. During the laboratory, the
students access the web-based materials and the Verilog HDL simulator on Sparc workstations.
The course uses the popular text Computer Architecture: A Quantitative Approach, second edition,
by John L. Hennessy and David A. Patterson. Whereas the text focuses on analyzing a design, the
author’s approach complements the text by having the student learn and do designs as well. This
design aspect is especially important to educational programs in the United States seeking
accreditation by the Accreditation Board of Engineering and Technology (ABET). (Most
engineering programs in the United States are accredited by ABET which serves as a stamp of
approval on the quality of the program.)

2

3. Hardware Description Languages

Digital systems are highly complex. At their most detailed level, they may consist of millions of
elements, e. g., transistors or logic gates. For many decades, logic schematics served as the lingua
franca of logic design, but not any more. Today, hardware complexity has grown to such a degree
that a schematic with logic gates is almost useless, as it shows only a web of connectivity and not
the functionality of design. Since the 1970s, computer engineers and electrical engineers have
moved toward hardware description languages (HDLs). The most prominent HDLs in industry are
Verilog and VHDL. Verilog is the top HDL used by over 10,000 designers at such hardware
vendors as Sun Microsystems, Apple Computer and Motorola. Industrial designers prefer
Verilog. The syntax of Verilog is based on the C language, while the syntax of VHDL is based on
Ada. Since the author's students know C or C++, Verilog was the obvious choice. A free Verilog
simulator is available from SynaptiCAD, Inc. For Windows 95/NT, Windows 3.1, Macintosh,
SunOS and Linux platforms, they offer FREE versions of their VeriWell product, which is
available from http://www.syncad.com/ver_down.htm. The free versions are the same as the
industrial versions except they are restricted to a maximum of 1000 lines of HDL code.

4. Verilog HDL

The Verilog language provides the digital designer with a means of describing a digital system at
a wide range of levels of abstraction, and, at the same time, provides access to computer-aided
design tools to aid in the design process at these levels.

Verilog allows hardware designers to express their design with behavioral constructs, deferring
the details of implementation to a later stage of design in the design. An abstract representation
helps the designer explore architectural alternatives through simulations and detect design bottle-
necks before detailed design begins.

Though the behavioral level of Verilog is a high level description of a digital system, it is still a
precise notation. Computer aided design tools exist which will “compile” the Verilog notation to
the level of circuits consisting of logic gates and flip flops. Verilog also allows the designer to
specify designs at the logical gate level using gate constructs and at the transistor level using switch
constructs. A primary use of HDLs in industry is the simulation of designs before the designer
must commit to fabrication.

5. Use of Verilog in Course

Our goal in the computer architecture course is not to create VLSI chips but to use Verilog to
precisely describe the functionality of any digital system, for example, a computer.

In the course, a small subset of the Verilog language is used to describe and develop computer
architectural concepts using a register transfer level model of computation. The course also uses
the structural and gate levels of Verilog to design such things as registers from D-flip flops and
adders from gates. To illustrate, we describe a simple computer in the Verilog-based model.

Assume we have a very simple computer, with 1024 words of memory (MEM) each 32-bits
wide, a memory address register (MA), a memory data register (MD), an accumulator (AC), an
instruction register (IR) and a program counter (PC). Since we have 1024 words of memory, the
PC and MA need to be 10-bits wide.

We can declare the registers and memory in Verilog as the following:

reg [0:31] AC, MD, IR;
reg [0:9] MA, PC;
reg [0:31] MEM [0:1023];

3

We assume a digital system can be viewed as moving vectors of bits between registers. This
level of abstraction is called the register transfer level. For example, we may describe in Verilog an
instruction fetch by four register transfers:

// instruction fetch
#1 MA <= PC;
#1 MD <= MEM[MA]; // memory read
#1 IR <= MD;
#1 PC <= PC + 1;

The meaning of the first line is to transfer the 10 bits of the PC into the MA register after waiting
one clock period (the #1). Note that it is important that we use Verilog’s blocking assignment
operator (<=) rather than the non-blocking assignment (=). In our computational model, we
assume that trailing edge triggered D-flip flops are used for the registers. Therefore, our Verilog
notation models the situation because the blocking assignment operator (<=) means to block the
assignment until the end of the current unit in simulation time.

Assuming the operation code for a LOAD instruction is 0000 in binary and is in the first four
bits of IR, we could design the decode and execute part of a LOAD instruction as follows:

// decode and execute code for a LOAD
#1 if (IR[0:3] == 4’b0000) begin

#1 MA <= IR[22:31]; // last 10 bits are address
#1 MD <= MEM[MA]; // memory read
#1 AC <= MD;

end

The students use Verilog to describe their digital systems but also to test their designs by a
simulator running on UNIX workstations. See the Appendix for the complete Verilog program of
this simple computer. The above design is very slow! A LOAD instruction would take eight clock
periods. Later in the course, the students learn to carefully analyze the Verilog code as well as
introduce concurrency to improve the speed. Thereby, the students learn the importance of fine
tuning the hardware for maximum performance.

6. Computational Model of Course

Register transfers are general. In fact, we can view a computation as a specific class of register
transfer.

Definition: A computation consists of placing some Boolean function of the contents of
argument registers into a destination register.

That is, in the course, a computation is a register transfer. In computer design, register transfers
are very important. They are everywhere -- in arithmetic logic units (ALU), control units (CU),
memory subsystems, I/O devices and interconnection networks.

Students learn that we need only Boolean functions. We don’t need arithmetic or higher order
functions. To realize the Boolean functions, we design combinational logic circuits, for example,
an adder, from AND, OR and NOT gates.

However, Boolean functions have no concept of time. To incorporate the passage of time in
our model, we define computing as a sequence of several register transfers where each transfer
takes one or more clock periods.

Definition: Computing is a sequence of computations.

4

Therefore, the above Verilog code for the LOAD instruction has seven computations or register
transfers. We would say that performing a LOAD instruction is computing because we do seven
computations one after the other, in sequential order.

A major part of the description of a computer is a plan defining each register transfer, or
computation, and specifying the order and timing in which these register transfers will take place.
In the course, students learn that the Verilog-based model describes both the data unit which
contains the digital circuits for each register transfer and the control unit which sequences these
register transfers at the proper times.

One of the clever parts of the Verilog language design was making register transfers look like
assignment statements in other programming languages. Since many designers are comfortable
with a language like C or Pascal, Verilog has had a large degree of success.

7. Realization of Verilog Code in Digital Logic

In the course we demonstrate that our subset of Verilog code can be realized in digital logic
circuits. Verilog is a structured language like C++ with sequence, if-then-else, case, while,
repeat and for constructs. In the course, we show how each control flow construct can be easily
“compiled” to a digital circuit as part of the control unit (a finite state machine). Also, we show
that this translation from Verilog code to digital circuit can be automated.

8. Why Verilog is Better than C or C++ for Modeling Hardware

Verilog has features used to model digital circuits that are not available in traditional procedural
languages like C or C++. One feature is the continuous assignment statement which is active
for the lifetime of the program. Whenever the arguments of the expression on the right-hand side
change, the outputs change, possibly after a specified time delay. This statement is used to model
combinational circuits such as an adder.

Another feature not found in C or C++ is the modeling of concurrency. For example, several
register transfers can be performed in the same clock period, or concurrently. Given the following
register transfers without any data dependencies:

#1 A <= B;
#1 C <= D;

we can remove the second #1 and have the transfers done in the same clock period.

#1 A <= B; C <= D;

The semantics of the Verilog blocking assignment says to evaluate all the right-hand sides and
block the assignments to left-hand sides until the end of the current unit of simulation time. This
models our assumption that the registers are composed of trailing edge D-flip flops where the
information is clocked into the flip flops at the end of the clock period.

Verilog has other language features for handling concurrency. For example, a digital system
with its own control unit is modeled by the initial (and always) construct. Several initial
constructs are executed concurrently. Within an initial construct, a structured fork and join
allows multiple threads of control within a control unit.

Also, another feature not found in C or C++, Verilog allows the execution of a procedural
statement when triggered by a value change on a wire or a register or the occurrence of a named
event. For example, this is useful to model interrupts as follows:

@(posedge I) Intr = line&mask; // controlled by positive edge of I

5

9. Laboratory Exercises

The students finish a series of twelve laboratory exercises that build on a simple four instruction
computer by adding addressing modes, integer multiply, instruction lookahead, cache and floating
point add. Along the way, the students explore Verilog’s structural modeling to construct a carry
ripple adder from AND, OR and EXCLUSIVE OR gates, and explore concurrency with fork
and join constructs and multiple digital systems and signaling.

The students find this approach using the Verilog notation easy to relate to the Hennessy and
Patterson text and their previous course work. The author finds using a major industrial HDL is
highly motivating to the students. The hardware-types see learning Verilog as an important mark
on their resumes for job opportunities. The software-types are also motivated, as they see Verilog
as another programming language to learn.

10. Conclusions

The author has developed an approach which allows students to design hardware components
using Verilog HDL, a hardware description language. The author has developed a 32-page Verilog
Manual and a 12-page paper on his Verilog-based computational model and how to realize the
model in digital circuits. Along with the free Verilog simulator supplied by SynaptiCAD Inc.,
these web-based materials supply to computer architecture instructors the ability to teach design of
architectural concepts as well the flexibility and freedom to modify the approach to integrate with
their current instructional needs. Over a dozen universities have requested permission to copy the
materials and hand them out to their students. All the materials are available on the author's web
site.

11. URLs for Web Pages

1. URL for the computer architecture course including the twelve laboratory exercises:
http://www.eg.bucknell.edu/~cs320/fall-1997/index.html

2. URL for use of Verilog in course:
http://www.eg.bucknell.edu/~cs320/fall-1997/verilog.html

3. URL for Verilog Manual:
http://www.eg.bucknell.edu/~cs320/1995-fall/verilog-manual.html

12. Appendix - Complete Verilog Program of a Simple Computer

// Ultra Simple Computer in Verilog HDL, by Dan Hyde; June 1, 1998

module ultra;
 // simple computer with 4-bit op codes in first four bits
 // and 10 bit address in last ten bits of 32-bit instructions
 // 0000 load M Load contents at address M into AC
 // 0001 store M Store contents of AC into address M
 // 0010 add M Add contents at address M to AC
 // 0011 jump M Jump to instruction at address M

parameter clock = 1;

// declare registers and flip flops
reg [0:31] AC, IR, MD;
reg [0:9] PC, MA;
reg [0:31] MEM[0:1023]; // 1024 words of 32-bit memory

6

// The two "initial" and the "always" constructs run concurrently

// Will stop the execution after 100 simulation units.
initial begin: stop_at
 #(100*clock) $stop;
end

// Initialize the PC register and memory MEM with test program
initial begin: init
 PC = 10; // start of machine language program
 MEM[3] = 32'b00000000000000000000000000000010; // Data 2
 MEM[4] = 32'b00000000000000000000000000000001; // Data 1
 MEM[10] = 32'b00000000000000000000000000000011; // Load 3
 MEM[11] = 32'b00100000000000000000000000000100; // Add 4
 MEM[12] = 32'b00010000000000000000000000000101; // Store 5
 MEM[13] = 32'b00110000000000000000000000001011; // Jump 11

 $display("Time PC IR MA MD AC MEM[5]");
// monitor following registers and memory location and print when any change
$monitor(" %0d %h %h %h %h %h %h", $time, PC, IR, MA, MD, AC, MEM[5]);

end

// main_process will loop until simulation is over
always begin: main_process

 // Instruction Fetch
 #clock MA <= PC;
 #clock MD <= MEM[MA]; // memory read
 #clock IR <= MD; MA <= MD[22:31]; // last ten bits are address
 #clock PC <= PC + 1;

 //decode and execute instruction
 if(IR[0:3] == 4'b0000) begin // load
 #clock MD <= MEM[MA];
 #clock AC <= MD;
 end
 if(IR[0:3] == 4'b0001) begin // store
 #clock MD <= AC;
 #clock MEM[MA] <= MD;
 end
 if(IR[0:3] == 4'b0010) begin // add
 #clock MD <= MEM[MA];
 #clock AC <= AC + MD;
 end
 if(IR[0:3] == 4'b0011) begin // jump
 #clock PC <= MA;
 end
end

endmodule

7

altair{128}% veriwell ultra.v
VeriWell for SPARC HDL <Version 2.0.1> Tue Jul 7 15:23:54 1998

 This is a free version of the VeriWell for SPARC Simulator
 Distribute this freely; call 1-800-VERIWELL for ordering information
 See the file "!readme.1st" for more information

 Copyright (c) 1994 Wellspring Solutions, Inc.
 All rights reserved

Entering Phase I...
Compiling source file : ultra.v
The size of this model is [3%, 3%] of the capacity of the free version

Entering Phase II...
Entering Phase III...
No errors in compilation
Top-level modules:
 ultra

Time PC IR MA MD AC MEM[5]
 0 00a xxxxxxxx xxx xxxxxxxx xxxxxxxx xxxxxxxx
 1 00a xxxxxxxx 00a xxxxxxxx xxxxxxxx xxxxxxxx
 2 00a xxxxxxxx 00a 00000003 xxxxxxxx xxxxxxxx
 3 00a 00000003 003 00000003 xxxxxxxx xxxxxxxx
 4 00b 00000003 003 00000003 xxxxxxxx xxxxxxxx
 5 00b 00000003 003 00000002 xxxxxxxx xxxxxxxx
 6 00b 00000003 003 00000002 00000002 xxxxxxxx
 7 00b 00000003 00b 00000002 00000002 xxxxxxxx
 8 00b 00000003 00b 20000004 00000002 xxxxxxxx
 9 00b 20000004 004 20000004 00000002 xxxxxxxx
 10 00c 20000004 004 20000004 00000002 xxxxxxxx
 11 00c 20000004 004 00000001 00000002 xxxxxxxx
 12 00c 20000004 004 00000001 00000003 xxxxxxxx
 13 00c 20000004 00c 00000001 00000003 xxxxxxxx
 14 00c 20000004 00c 10000005 00000003 xxxxxxxx
 15 00c 10000005 005 10000005 00000003 xxxxxxxx
 16 00d 10000005 005 10000005 00000003 xxxxxxxx
 17 00d 10000005 005 00000003 00000003 xxxxxxxx
 18 00d 10000005 005 00000003 00000003 00000003
 19 00d 10000005 00d 00000003 00000003 00000003
 20 00d 10000005 00d 3000000b 00000003 00000003
 21 00d 3000000b 00b 3000000b 00000003 00000003
 22 00e 3000000b 00b 3000000b 00000003 00000003
 23 00b 3000000b 00b 3000000b 00000003 00000003
 25 00b 3000000b 00b 20000004 00000003 00000003
 26 00b 20000004 004 20000004 00000003 00000003
 27 00c 20000004 004 20000004 00000003 00000003
 28 00c 20000004 004 00000001 00000003 00000003
 29 00c 20000004 004 00000001 00000004 00000003
 30 00c 20000004 00c 00000001 00000004 00000003
 31 00c 20000004 00c 10000005 00000004 00000003
 32 00c 10000005 005 10000005 00000004 00000003
 33 00d 10000005 005 10000005 00000004 00000003
 34 00d 10000005 005 00000004 00000004 00000003
 35 00d 10000005 005 00000004 00000004 00000004

8

 36 00d 10000005 00d 00000004 00000004 00000004
 37 00d 10000005 00d 3000000b 00000004 00000004
 38 00d 3000000b 00b 3000000b 00000004 00000004
 39 00e 3000000b 00b 3000000b 00000004 00000004
 40 00b 3000000b 00b 3000000b 00000004 00000004
 42 00b 3000000b 00b 20000004 00000004 00000004
 43 00b 20000004 004 20000004 00000004 00000004
 44 00c 20000004 004 20000004 00000004 00000004
 45 00c 20000004 004 00000001 00000004 00000004
 46 00c 20000004 004 00000001 00000005 00000004
 47 00c 20000004 00c 00000001 00000005 00000004
 48 00c 20000004 00c 10000005 00000005 00000004
 49 00c 10000005 005 10000005 00000005 00000004
 50 00d 10000005 005 10000005 00000005 00000004
 51 00d 10000005 005 00000005 00000005 00000004
 52 00d 10000005 005 00000005 00000005 00000005
 53 00d 10000005 00d 00000005 00000005 00000005
 54 00d 10000005 00d 3000000b 00000005 00000005
 55 00d 3000000b 00b 3000000b 00000005 00000005
 56 00e 3000000b 00b 3000000b 00000005 00000005
 57 00b 3000000b 00b 3000000b 00000005 00000005
 59 00b 3000000b 00b 20000004 00000005 00000005
 60 00b 20000004 004 20000004 00000005 00000005
 61 00c 20000004 004 20000004 00000005 00000005
 62 00c 20000004 004 00000001 00000005 00000005
 63 00c 20000004 004 00000001 00000006 00000005
 64 00c 20000004 00c 00000001 00000006 00000005
 65 00c 20000004 00c 10000005 00000006 00000005
 66 00c 10000005 005 10000005 00000006 00000005
 67 00d 10000005 005 10000005 00000006 00000005
 68 00d 10000005 005 00000006 00000006 00000005
 69 00d 10000005 005 00000006 00000006 00000006
 70 00d 10000005 00d 00000006 00000006 00000006
 71 00d 10000005 00d 3000000b 00000006 00000006
 72 00d 3000000b 00b 3000000b 00000006 00000006
 73 00e 3000000b 00b 3000000b 00000006 00000006
 74 00b 3000000b 00b 3000000b 00000006 00000006
 76 00b 3000000b 00b 20000004 00000006 00000006
 77 00b 20000004 004 20000004 00000006 00000006
 78 00c 20000004 004 20000004 00000006 00000006
 79 00c 20000004 004 00000001 00000006 00000006
 80 00c 20000004 004 00000001 00000007 00000006
 81 00c 20000004 00c 00000001 00000007 00000006
 82 00c 20000004 00c 10000005 00000007 00000006
 83 00c 10000005 005 10000005 00000007 00000006
 84 00d 10000005 005 10000005 00000007 00000006
 85 00d 10000005 005 00000007 00000007 00000006
 86 00d 10000005 005 00000007 00000007 00000007
 87 00d 10000005 00d 00000007 00000007 00000007
 88 00d 10000005 00d 3000000b 00000007 00000007
 89 00d 3000000b 00b 3000000b 00000007 00000007
 90 00e 3000000b 00b 3000000b 00000007 00000007
 91 00b 3000000b 00b 3000000b 00000007 00000007
 93 00b 3000000b 00b 20000004 00000007 00000007
 94 00b 20000004 004 20000004 00000007 00000007
 95 00c 20000004 004 20000004 00000007 00000007

9

 96 00c 20000004 004 00000001 00000007 00000007
 97 00c 20000004 004 00000001 00000008 00000007
 98 00c 20000004 00c 00000001 00000008 00000007
 99 00c 20000004 00c 10000005 00000008 00000007
Stop at simulation time 100
C1>
charcoal{47}%

10

