NN

Ny 7

_-- ~11 |\ -'. mamnll i

=%l lmim mlm m nim o -

2

e

- ~11 [efenle e afm

el

- Verilog Basics

Teemu Pitkanen
Teemu.pitkanen@tut.fi
TH318

(03) 3115 4778

e

TKT-1210 Digital design 11, Lect 7 1 $ Tampere University of Technology
© Teemu Pitkiinen (teemu.pitkanen@tut.fi) Institute of Digital and Computer Systems

)

R

N

Outline

)

o3|

e

N

i

e

g

N

i’i'ﬁ'

)

Ul

P

N

f

]

i

g

N

i’i'ﬁ'

)

Ul

P

N

f

]

.?_s.?:\?gr_ R

)

|

d

Modules

Logic level modelling
Design hierarchy
Behavioural modelling
Concurrent processes
Parameters

Switch level modelling

Source: The Verilog Hardware Description Language, 2nd
Edition. D. E. Thomas and P. R. Moorby. 1995.

TKT-1210 Digital design II, Lect 7
© Teemu Pitkéinen (teemu.pitkanen@tut.fi)

e

N

i

2

ey

Tampere University of Technology
Institute of Digital and Computer Systems

5

N

»

8
f

o

T

N

Introduction

d

?‘T

L

i

Fyes —

o

f

Tk

"

i

N
o

f

7 Verilog was developed around 1983 at Gateway Design
Automation (later a part of Cadence) by Phil Moorby.

Was first used in a simulator.

7 Language was opened to the public in 1980.
Much like C

1 Case sensitive

Key elements:
— modules

e

a—T
[,

e

f

"

i

pﬁ_\.
o

i

o

.
o

N

— behavioural modelling

— continuous assignments
— hierarchy

— component instantiation

?‘T

X

T

i

L

TKT-1210 Digital design II, Lect 7 3 % Tampere University of Technology
© Teemu Pitkéinen (teemu.pitkanen@tut.fi) Institute of Digital and Computer Systems

f

5
1

Module

1 Verilog describes a digital system as a set of modules.
7 Each module has an interface and a description off its contents.
7 There can be an module without inputs or outputs.

module <module name> (<port names>);

endmodule

0 Example:
module Nand (g, a, b);

output gy _—'-.__llr
- " —
A

input a, b;

nand (g, a, b);

endmodule
TKT-1210 Digital design II, Lect 7 4 % Tampere University of Technology
© Teemu Pitkéinen (teemu.pitkanen@tut.fi) Institute of Digital and Computer Systems

)

Sl i

P

°
1

X

TN Ky RN

—
'n'i'

Gate Level Modelling

7 Describes the circuit in terms of interconnections of logic
primitives (ANDs, ORs, ...).
o Verilog provides gate level primitives for the standard logic
functions.
— and, nand, nor, or, xor, xnor (standard logic functions)
— buf (buffer)
— not (inverter)
— bufif0, bufif1, notif0, notif1 (buf and not with a tristate enable input)

— nmos, pmos, cmos, rnmos, rpmos, rcmos, tran, tranif0, tanif1, rtran,
rtranif0, rtranif1, pullup, pulldown (transistor switch level models)

1 Standard logic functions has a single output or bidirectional
port and any number of inputs.

7 The output is the first one in the gate instantiations.

TKT-1210 Digital design II, Lect 7 5 % Tampere University of Technology
© Teemu Pitkéinen (teemu.pitkanen@tut.fi) Institute of Digital and Computer Systems

4

S

- Gate Level Modelling (2)

o Buf and not may have any number of outputs. The only inout is listed
last.

0 Example:

PIAINN|

oy oo, g

oy Jreeqidlil o

e i g

module GatelLevel (COut, Sum, A, B, CIn);
output COut, Sum;
input A, B, CIn;
wire x2;
nand (x2, A, B), —
(COut, x2, x8); j 11
XNor (x9, x5, x6); st R : HSEHTE ||
nor (x5, x1, x3), - — N
(x1, A, B);) ! .
or (x8, x1, x7); CIn[> 1
not (Sum, x9), |
(x3, x2),
(x6, x4),
(x4, CIn),
(x7, x06);
endmodule
TKT-1210 Digital design II, Lect 7 6 $ Tampere University of Technology
© Teemu Pitkiinen (teemu.pitkanen@tut.fi) Institute of Digital and Computer Systems

o o o]é

fo

R

fo

R

o9 o

foe

ere i, e

e

o3 Fpeied];

by eyied

Gate Level Modelling (3)

1 The general syntax for gate instantiation:
<GATETYPE> <drive strength> <delay> <gate instance>,
<gate instance>;
o where
— <GATETYPE> is one the gate level primitives

— <gate_instance> ::= <name_of gate _instance> (<terminal>,
<terminal>)

— <name_of _gate_instance> ::= identifier

TKT-1210 Digital design II, Lect 7 7 $ Tampere University of Technology
© Teemu Pitkéinen (teemu.pitkanen@tut.fi) Institute of Digital and Computer Systems

Gate Level Modelling (4)

o Example:
nand Namel (Outl, AIn, BIn),
OtherName (COut, x12, x1);
7 Nand gates with drive strenght and simulation delay:
nand (strong0, strongl) #3
Namel (Outl, AIn, BIn),
OtherName (COut, x12, x1);

7 When drive strength and/or delay is given, it applies to all the
defined instances in the comma-separated list.

7 To change one or both these qualifiers, the gate instantiation
must be ended (with a “;”) and restarted.

TKT-1210 Digital design II, Lect 7 8 % Tampere University of Technology
© Teemu Pitkéinen (teemu.pitkanen@tut.fi) Institute of Digital and Computer Systems

X

)2

K

)
—a
2

Nets

7 Nets do not store values.
7 Net of type wire which have a delay:

wire #3 x2;

7 #indicates delay.
1 Delay could include both rise fall time specifications.

1 Example transition to 1 has a delay of 3 units and the fall to 0
has a delay of 5:

wire #(3,5) x2;

7 Nets can also be declared implicit!
— when modules are connected with nets

TKT-1210 Digital design II, Lect 7 9 % Tampere University of Technology
© Teemu Pitkéinen (teemu.pitkanen@tut.fi) Institute of Digital and Computer Systems

8
f

o
o

I

N

L

.

A

I

e —

e

o

f

Tk

-

?‘T

i

.
o

f

f

p,-._x
o

X

o

L

.

N

i

2

Nets (2)

1 Other net types than wires can be used.

Net Type Modeling Usage

wire, tr1 Used to model connections with no logic function.
Only difference is the name.

wand., wor. triand, trior | Used to model the wired logic functios.

tri0. tril Used to model connections with a resistive pull to given supply.
supply0. supplyl Used to model the connection to a power supply.
trireg Used to model charge storage on a net.

7 Example, AND-port and wired-AND (wand):
— AND-port treats a z on its inputs as an X.
— wand will pass z on its input

TKT-1210 Digital design II, Lect 7 10 % Tampere University of Technology
© Teemu Pitkéinen (teemu.pitkanen@tut.fi) Institute of Digital and Computer Systems

8
f

T

N

d

e

N

i

Fyes —

e

o

f

Tk

-

?‘T

i

N
o

f

f

ol

L

?‘T

i

pﬁ_\.
o

X

o

d

e

N

i

2

Registers

1 Registers are abstractions of storage devices found in real
system.

7 Registers are defined with the reg keyword.
0 Size is optionally given. The default size is one.
0 Example:
reg TempBit;
— defines a single bit register named TempBit
reg [15:0] TempNumber;
— defines a 16-bit register
reg [0:15] TempNumber?Z;
— defines also a 16-bit register

TKT-1210 Digital design II, Lect 7 " % Tampere University of Technology
© Teemu Pitkéinen (teemu.pitkanen@tut.fi) Institute of Digital and Computer Systems

R

o3 Fpeied];

by eyied

o9 o

aeqindi] e

Registers (2)
o Both bit-select and part-select can be used.

reg [11:0] counter;
reg a;
reg [2:0] Db;

a = counter([7]; // bit seven is loaded into a

b = counter[4:2] // bits 4, 3, and 2 are loaded into b

7 Notice the comment style: // starts a comment

TKT-1210 Digital design II, Lect 7 12 $ Tampere University of Technology
© Teemu Pitkéinen (teemu.pitkanen@tut.fi) Institute of Digital and Computer Systems

NS

L

.

N

o

Mooy

NS

8
AL

23]

¥

"y 48

Ne

(]
f

r;\:'

L

Port S pecifications

An input port specifies the internal name for a vector or scalar
that is driven by external entity.

An output port specifies the internal name for a vector or scalar
which is driven by an internal entity is available external to the
module.

An inout port specifies the internal name for a vector or scalar
that can be driven either by an internal or external entity.

Input or inout port cannot be declared to be of type register.

These port types may be read into register using a procedural
assignment, used on the right-hand side of a continuous
assignment, or used as input to instantiated modules or gates.

TKT-1210 Digital design II, Lect 7 13 $ Tampere University of Technology

.

© Teemu Pitkéinen (teemu.pitkanen@tut.fi)

=
A5

Institute of Digital and Computer Systems

&0 o o]é

R

33z Sl

R

o3 s

detled]; A

)

e

oy Jpeyfed i

Port S pecifications (2)

7 A module’s ports are normally connected at the in the order in
which they are defined.

7 Connection can be done also by nhaming the port and giving its
connection.

0 Example:
module AndOfComplements(a, b, c, d);
input a, b;
output c, d;
wand c;

wand d;

not (d,

endmodule

TKT-1210 Digital design II, Lect 7 14 $ Tampere University of Technology
© Teemu Pitkéinen (teemu.pitkanen@tut.fi) Institute of Digital and Computer Systems

@

_...'-.

oy Jpeyfed i

I

o3 Jeind|]

I

ineeq(ed]} AR

o5 Jeeqiod]

) O ol

Port S pecifications (3)

module Ace;
wire r, t;
reg g, s;
AndOfComplements ml(.b(s), .a(g), .c(r), .d(t));

endmodule

1 Port b of instance m1 of module AndOfComplements will be

connected to the output of register s, port a to the output of
register q, and so on.

7 The connections may be listed in any order.

TKT-1210 Digital design II, Lect 7 15 $ Tampere University of Technology
© Teemu Pitkéinen (teemu.pitkanen@tut.fi) Institute of Digital and Computer Systems

s

%i

g ﬁ%ﬁ?lﬁi

hi:ﬁ-

I ‘1'7?[5 A

hi:ﬁ-

'J'ﬁﬂﬁ?lﬁi

N

e i g

Continuous Assignment

o Abstractly model combinational HW driving values onto nets.
7 assign statement
module Gatelevel? (COut, Sum, A, B, CIn);
output COut, Sum;
input A, B, CInj;

assign Sum = A ~ B * CIn,
COut = (A & B) | (B & CIn) | (A & CIn);

S = I S

=) O
Do

Tampere University of Technology
Instltute of Digital and Computer Systems

endmodule

TKT-1210 Digital design II, Lect 7 16
© Teemu Pitkéinen (teemu.pitkanen@tut.fi)

)

SN

o3|

.

N

i

e

g

N

i’i'ﬁ'

)

l

.

N

f

]

i

g

N

i’i'ﬁ'

)

l

.

N

f

]

.?_s.?:\?gr_ R

)

|

L

Continuous Assignment (2)

Continuous assignment is always active. If any input to the
assign statement changes at any time, the assign statement will
be re-evaluated and the output will be propagated.

The general form of the assign statement is:
assign <drive strength> <delay> <list of assignments>;
drive_strength and delay are optional
Example:
assign #5
Sum = A ~ B ©~ CIn,
COut = (A & B) | (B & CIn) | (A & CIn);

The final gate level implementation is left to a synthesis
program.

TKT-1210 Digital design II, Lect 7 17 % Tampere University of Technology

.

N

© Teemu Pitkéinen (teemu.pitkanen@tut.fi)

i

2

ey

Institute of Digital and Computer Systems

Logical Operators

Operation
~ bitwise negation Complements each bit in the operand
& bitwise AND Produces the bitwise AND of two operands
~& bitwise NAND
| bitwise OR
~ | bitwise NOR
a bitwise XOR
Aos QL ~" equivalence Produces the bitwise exclusive NOR
& unary reduction AND | Produces the single bit AND of all of the
bits of the operand
~& unary reduction NAND
| unary reduction OR

TKT-1210 Digital design II, Lect 7

18 % Tampere University of Technology
© Teemu Pitkéinen (teemu.pitkanen@tut.fi) Institute of Digital and Computer Systems

|

_...'-.

oy Jpeyfed i

e

B2l

e

ﬁiﬂﬁr L '\ ?T;l

o9 Betled]

) O ol

Logical Operators (2)

Operation
~ | unary reduction NOR | Produces the single bit NOR.f all of the bits
of the operand
h unary reduction XOR
~Mor A~ | unary reduction XINOR

7 Unary reduction and binary bitwise operators are distinguished
by syntax.

TKT-1210 Digital design II, Lect 7 19 $ Tampere University of Technology
© Teemu Pitkéinen (teemu.pitkanen@tut.fi) Institute of Digital and Computer Systems

R

o3 Jrpelesled];

e

o3 eeqd i

e

ﬁ‘wﬁf T\l TT;[.

o9 Jeyled]

Logical Operators (3)

Table 1: Bitwise AND
0 1

&
0
1
X

I I |

0
0
0

el R

Table 2: Bitwise XNOR

_.
“ ol = o
= o
| | A

TKT-1210 Digital design I, Lect 7 20 $ Tampere University of Technology
© Teemu Pitkéinen (teemu.pitkanen@tut.fi) Institute of Digital and Computer Systems

- ~11 [efenle e afm

e s

NGy)7

-.||'" B [-'. mamnll i

L

- <11 |efmelemafe

s

e

<11 [efenilememel .-

eroll]

o

N

s

Operator Precedence

highest precedence: ! & ~& | ~| * ~" + - (unary operators)
* /%
+
<< B>
< <= > >=

lowest precedence: ?:

TKT-1210 Digital design II, Lect 7 21 $ Tampere University of Technology
© Teemu Pitkiinen (teemu.pitkanen@tut.fi) Institute of Digital and Computer Systems

ey

_...'-.

o3 Fesied il 9

I

o3 Jeind|]

I

ineeq(ed]} AR

o5 Jeeqiod]

) O ol

Behavioural Modelling of Combinational
Circuits

o The right-hand side expression in the assign statement may
contain a function call.

7 Within a function, procedural statements such as case and
looping statements may occur. However, function may not
contain control statements such as event checks. => no
sequential structures

1 Example:

module Multiplexor (A, B, C, D, Select, E);
input A, B, C, D;
input [1:0]Select;
output E;

assign E = mux(A, B, C, D, Select);

TKT-1210 Digital design I, Lect 7 22 $ Tampere University of Technology
© Teemu Pitkéinen (teemu.pitkanen@tut.fi) Institute of Digital and Computer Systems

I-R _ﬁ.

P

R

Brofa’ .
—
Wa
P =
B0 s .
s
Bro=
—"
W

:-.: e
T =
(—
e
e T
o =

P

s

el

Behavioural Modelling of Combinational
Circuits (2)

o Example continues...

function mux; A
input A, B, C, D; C
input [1:0]Select; B[:}W
case (Select) 1A >E
2'"b00: mux = A; >
2"b01l: mux = B;
2"010: mux = C; cSelectll:0] — |
2'"bll: mux = D;
default: mux =’bx; Select(p]
endcase
endfunction
endmodule
TKT-1210 Digital design II, Lect 7 23 $ Tampere University of Technology
© Teemu Pitkiinen (teemu.pitkanen@tut.fi) Institute of Digital and Computer Systems

)

\

?W

¢

o

N

T

i

?

S

2

Net and Continuous Assignment

7 A shorthand way to specify a value to be driven onto a net is
combine the net and assign definition statements.

module ModXor (AXorB, A, B);
output [7:0] AXorB;
input [7:0] A, B;
wire [7:0] #5 AXorB = A ~ B;
endmodule

7 The delay (#5) specifies the delay involved in the XOR-port, not
in the wire drivers.

7 If the wire and XOR had been declared separately, a separate
delay could gave assigned to the wire drivers:
wire [7:0] #10 AXorB;
assign #5 AXorB = A * B;

TKT-1210 Digital design II, Lect 7 24 % Tampere University of Technology
© Teemu Pitkéinen (teemu.pitkanen@tut.fi) Institute of Digital and Computer Systems

o)

@

o3 Jrplesled]

I

oy e[l

I

o5 Jdeqind]]

ineeq(ed]} AR

Parameters

7 Parameters allow us to define generic module.
7 Keyword parameter
0 Example:
module XorX (XOut, XInl, XInZ2);

parameter width = 4,

delay = 10;

output [l:width] XOut;

input [l:width] XInl, XInZ2;

assign #delay XOut = XInl ~ XIn2;
endmodule
7 Instantiation of the parameterized module:
— XorX #(8, 0) x1(D, A, B);

TKT-1210 Digital design II, Lect 7 25 $ Tampere University of Technology
© Teemu Pitkéinen (teemu.pitkanen@tut.fi) Institute of Digital and Computer Systems

S

L

.

N

o

)

Wik

«

-]
e

i

°
y

Mk

«

°
1

f

kS

L

Parameters (2)

The #(8, 0) specifies that the value of the first parameter (width)

is 8 for this case, and the value of the second parameter (delay)

is 0.

If the #(8, 0) was omitted in the instantiation, the values

specified in the module definition would be used as a default

values.

The general form is specifying parameter values is:
<name of module> <parameter value assignments>
<module instance> <module instance>;

The order of the overriding values follows the order the
parameter specification in the module’s definition.

It is not possible to skip over some parameters in a module
definition and respecify the rest.

TKT-1210 Digital design II, Lect 7 26 $ Tampere University of Technology

.

© Teemu Pitkéinen (teemu.pitkanen@tut.fi)

=
A5

Institute of Digital and Computer Systems

)

T

!

o3|

.

N

i

e

g

N

f?ﬁf

)

l

.

N

f

]

i

g

N

f?ﬁf

)

l

.

N

i

f

by

N

f?ﬁf

)

i

2

ey

Parameters (3)

7 Another approach to overriding the parameters in a module
definition is to use the defparam statement.

7 Not supported, e.g. by Synopsys synthesis.

7 Using that statement, all of the respecifications of parameters
can be grouped into one place within the description.

module Xors (Al, A2);
output [3:0] Al, AZ;
reg [3:0] B1, C1, B2, C2;

XorX A(Al, B1, CI1),
B(A2, B2, C2);

endmodule

module Annotate;
defparam
Xors.B.width = 8;

endmodule

TKT-1210 Digital design II, Lect 7 27
© Teemu Pitkéinen (teemu.pitkanen@tut.fi)

Tampere University of Technology
Institute of Digital and Computer Systems

° °
£~ Logic Delay Modelling
| Ei
je =~ 0 Example circuit:
) module TriStateLatch (QOut, NQOut, Clock, Data,

output QOut, NQOut;

A= input Clock, Data, Enable;

— "E_ tri QOut, NQOut;

] =

7 Ei. not #5 (NData, Data);

5. = nand #(3,5) N1 (WA, Data, Clock),

ol N2 (WB, NData, Clock);
ot nand #(12,15) N3(Q, NQ, Wa),

N4 (NQ, Q, WB);

Enable) ;

© Teemu Pitkéinen (teemu.pitkanen@tut.fi)

e
_, bufifl #(3, 7, 13) QDrive (QOut, Q, Enable),

= NODrive (NQOut, NQ, Enable);
s dmodul
i : endmodule
¢ Ei; bufifl
i o - Control Input (enable)
' it e Input Diata
.. n . 0 1 X z
B = D z 0 iz iz
y [-]
L /AL 1 z 1 liz liz
LY
AT
- “T X z x X X

C . z z X X X

:"i’. TKT-1210 Digital design I1, Lect 7 28
| '.‘_

[

fta—

$ Tampere University of Technology
Institute of Digital and Computer Systems

]
T

Logic Delay Modelling (2)

1l

1 Gate delays:

— delays are specified in terms of the transition to 1, the transition to
0, and the transition to z

— the default delay is zero
— e.d., bufif1 #(3,7,13) has a rising delay of 3, falling delay of 7, and a
delay to the high impedance value of 13
7 Generally the delay specification takes the form of:

— #(d1, d2, d3), where d1 is the raising delay, d2 the failing delay and
d3 the delay to the high impedance value.

7 If one delay parameter is specified, then the value is used for all
delays

-
o

s
.1

s

i

-
o

s
.1

o
o

TKT-1210 Digital design I, Lect 7 29 % Tampere University of Technology
© Teemu Pitkéinen (teemu.pitkanen@tut.fi) Institute of Digital and Computer Systems

]
B
Il

I

:\31'

ke

I

31..

i—_.-.—-_ B A

ki

g

Verilog Numbers

1 Constant numbers can be specified in decimal, hexadecimal,
octal, or binary

o A number can be given one of two forms.

7 The 1st form is an unsized decimal number specified using the
digits from the sequence 0 to 9.

— Verilog calculates a size and the appropriate number of bits,
starting from the least significant bit, are selected for use.

1 The 2nd form specifies the size of the constant and takes the
form:

SsS...s ‘f nn...n

o where:
TKT-1210 Digital design I, Lect 7 30 % Tampere University of Technology
© Teemu Pitkéinen (teemu.pitkanen@tut.fi) Institute of Digital and Computer Systems

)RS T K

f

Ul

B}

N

f

s

Ne

(]
% |

—
'n'i'

Verilog Numbers (2)

ss...s is the size in bits of the constant. The size is specified as a
decimal number.

‘f is the base format. The f is replaced by one of the single letters:
d (decimal), h (hexadecimal), o (octal), or b (binary). The letters
may also be capitalized.

nn. ..n is the value of the constant with allowable digits. For the
hexadecimal base, the letters a through f may also be
capitalized.

7 An underline character may be inserted into a number (of any
base) to improve readability. It must not be the first character of
a number.

=> 0x0x_1101_ 0zx1 is the same than 0x0x1101 0zx1

TKT-1210 Digital design II, Lect 7 3 $ Tampere University of Technology
© Teemu Pitkéinen (teemu.pitkanen@tut.fi) Institute of Digital and Computer Systems

@

g ﬁ%ﬁ?lﬁi

v;

I ‘1'7?[5 A

@

'J'ﬁﬂﬁ?lﬁi

Verilog Numbers (3)

7 Examples (unsized):

792 // a decimal number

deei] g2

7d9 // ILLEGAL, hexadecimal must be specified with ‘h
‘h 7d9 // an unsized hexadecimal number
‘o 7746 // an unsized octal number
1 Examples (sized):
12 ‘h x // a 12 bit unknown number
10 Yd 17 // a 10 bit constant with the value 17
4 ‘b 110z // a 4 bit binary number
© Teemu Ptkinen (o itanen @t i R e el D s

)

T

!

o3|

.

N

i

e

g

N

f?ﬁf

)

l

.

N

f

]

i

g

N

f?ﬁf

)

l

.

N

i

f

by

N

f?ﬁf

)

i

2

ey

Initial S tatement

7 The initial statement describes a process.
7 Is executed only once.

7 The initial statement provides a means of initiating input
waveforms and initializing simulation variables before the actual
description begins.

o Once the statements in the initial are exhausted, statement
becomes inactive

module ffNandSim;

reg preset, clear;

initial
begin
#10 preset = 0; clear = 1;

#10 preset

#10 clear = 0;

#10 clear = 1;
end

endmodule

TKT-1210 Digital design I, Lect 7 33 % Tampere University of Technology
© Teemu Pitkéinen (teemu.pitkanen@tut.fi) Institute of Digital and Computer Systems

)

T

!

o3|

.

N

i

e

g

N

f?ﬁf

)

l

.

A\

f

]

i

g

N

f?ﬁf

)

l

.

A\

i

f

by

N

f?ﬁf

)

i

2

ay

Always Statement

7 The basic Verilog statement for a process is the always

statement.

7 It continuously repeats its statement, never exiting or stopping
7 A behavioural Verilog model can contain one or more always

statements.

7 A module without always statement is purely a specification of

hierarchical structure.
0 Example:

module ClockGen (Clock) ;

output Clock;
reg Clock;

initial

#5 Clock = 1;
always

#50 Clock = ~Clock;

endmodule

TKT-1210 Digital design II, Lect 7 34
© Teemu Pitkéinen (teemu.pitkanen@tut.fi)

Tampere University of Technology
Institute of Digital and Computer Systems

@

_...'-.

oy Jpeyfed i

I

o3 Jeind|]

I

ineeq(ed]} AR

o5 Jeeqiod]

) O ol

Always Statement (2)

o At the start, the output has the value x.

7 After 5 time units have passed, the output is initialized to be
one.

0 After the 1st 50 time units have passed, the always statement
executes.

@ JOlockien/Glock =

TKT-1210 Digital design II, Lect 7 35 $ Tampere University of Technology
© Teemu Pitkéinen (teemu.pitkanen@tut.fi) Institute of Digital and Computer Systems

Edge Sensitive Process

1 Event control construct: @

7 The event control watch for a situation that is generated by an
external process.
7 Watch for a change in a value -> edge sensitive
module DFlipFlop(Q, Clk, Data);
output Q;

reg Q7
input Clk, Data;

initial Q = 0;
always @ (negedge Clk) Q = Dataj;
endmodule

o Q will be loaded with the value on the Data when there is a
negative edge on the Clk-port.

TKT-1210 Digital design II, Lect 7 36 % Tampere University of Technology
© Teemu Pitkéinen (teemu.pitkanen@tut.fi) Institute of Digital and Computer Systems

d

-

!

<o
g

-

?‘T

f

ki

A%
b

d

Edge Sensitive Process (2)

In addition to specifying a negative edge to trigger on, also a
positive edge can be specified:

always @ (posedge Foo) Outl = InZ2;
Or we can watch for any change:

@(ControlSignal) Out2 = Inl;

The watched instance can be a gate output, a wire or a register
whose value is generated as a activity in another process.

Any number of events can be expressed in the event control
statement such that the occurence of any one of them will
trigger the execution of the statement.

@ (posedge InputA or posedge Timer)

TKT-1210 Digital design II, Lect 7 37 % Tampere University of Technology

e

N

© Teemu Pitkéinen (teemu.pitkanen@tut.fi)

!

2

Institute of Digital and Computer Systems

e

o3 Fpeied];

X

R

by eyied

X

R

o9 o

foe

ere i, e

Wait S tatement

1 Wait statement waits for its conditional expression to become
true.

1 Level sensitive

7 Primary for synchronizing two concurrent processes.
module WaitModule (DataOut, Dataln, Ready):;
output [7:0] DataOut;
input [7:0] Dataln;
input Ready;

reg Internal;

always
begin
walit (Ready)

Internal = Dataln;

end

endmodule

TKT-1210 Digital design I, Lect 7 38 $ Tampere University of Technology
© Teemu Pitkéinen (teemu.pitkanen@tut.fi) Institute of Digital and Computer Systems

e

o3 Fpeied];

X

R

by eyied

X

R

o9 o

foe

ere i, e

‘define Directive

1 Compiler directive ‘define defines a value and gives a constant
textual value to it.

7 On compilation the text value will be substituted.
"define DvLen 15
"define DdLen 31
"define QLen 15
"define hiDdMin 16

module Divide (DdInput, DvInput, Quotient, Go, Done);
input [DdLen:0] DdInput;
input [DvLen:0] DvInput;
output [QLen:0] Quotient;

TKT-1210 Digital design I, Lect 7 39 $ Tampere University of Technology
© Teemu Pitkéinen (teemu.pitkanen@tut.fi) Institute of Digital and Computer Systems

If-Then-Else

7 Purely procedural operator (for behavioural modelling). It may
appear only in the body of an initial or always statement, or in a
subprogram.

0 If statement can be with or without an else clause.
if (<expression>)
<statement or null>
else

<statement_or_null>

7 Example (no else):

if (NegDivisor)

Divisor = -Divisor;

1 Example (with else):
if (!Divident[DdLen])
Quotient = Quotient+l;

else
Divident[DdLen: HiDdMin] = Divident|[DdLen: HiDdMin] + Divisor;
TKT-1210 Digital design II, Lect 7 40 % Tampere University of Technology
© Teemu Pitkéinen (teemu.pitkanen@tut.fi) Institute of Digital and Computer Systems

I

f

g

31..

N

s

If-Then-Else (2)

1 The else clause is paired with the nearest, unfinished
if statement.

7 The begin-end block following the if statement allows
all of the encompassed statements to be considered
as part of the then statement of the if.

if (Divisor)

begin
NegDivisor = Divisor[DvLen];
if (NegDivisor)
Divisor = -Divisor;
if (!Divident[DdLen])
Quotient = Quotient+l;
else

Divident [DdLen: HiDdMin] = Divident|[DdLen: HiDdMin] +
Divisor;

TKT-1210 Digital d@%‘} 8_’ Lect 7 41 % Tampere University of Technology
© Teemu Pitkéinen (teemu.pitkanen@tut.fi) Institute of Digital and Computer Systems

e

'r?'w‘”ff{-'lf

K

AN\ l

R0

IR l

@V-T % l 'r...f;l

Relational Operators

W

Determines relative value | Registers and net operands are treated as unsigned. Real and integer

operands may be signed. It any bit 1s unknown, the result waill be
unknown.

== | Determines relative value | Registers and net operands are treated as unsigned. Real and integer

operands may be signed. It any bit 1s unknown, the result will be
unknown.

< | Determunes relative value | Registers and net operands are treated as unsigned. Real and integer

operands may be signed. If any bit 15 unknown, the result will be
unknown.

<= | Determines relative value | Registers and net operands are treated as unsigned. Real and integer

operands may be signed. It any bit 1s unknown, the result will be
unknown.

TKT-1210 Digital design II, Lect 7 42 $ Tampere University of Technology
© Teemu Pitkéinen (teemu.pitkanen@tut.fi) Institute of Digital and Computer Systems

e

o3 Fpeied];

R

by eyied

R

o9 o

ﬁ'ﬁﬁf | l @

Relational Operators (2)

— | Logical equality | Registers and net operands are treated as unsigned. Real and integer operands
may be signed. If any bit 1s unknown (or high impedance), the result will be
unknown

= | Logical equality | Registers and net operands are treated as unsigned. Real and integer operands
may be signed. If any bit 1s unknown (or high impedance). the result will be
unknown

=== | Case equality | The bitwise comparison includes comparison of x and z values. All bifs must
match for equality. The result 1s either TRUE or FALSE.

== | Case equality The bitwise comparison includes comparison of x and z values. All bits must
match for equality. The result 1s either TRUE or FALSE.

4 ‘b 110z == 4 ‘b110z => FALSE
4 ‘b 110z===4 ‘b 110z => TRUE

TKT-1210 Digital design II, Lect 7 43 $ Tampere University of Technology
© Teemu Pitkéinen (teemu.pitkanen@tut.fi) Institute of Digital and Computer Systems

e el ey

ke

P

o
Ll

f

P

o
Ll

X

—
'n'i'

TRl R

Conditional Operator

1 The conditional operator (?:) can be used in place of the if
statement when one of two values is to be selected for
assighment.

7 The general form of the conditional operator is:
:: = <expression> ? <expression> : <expression>

0 If the first expression is TRUE, then the value of the operator is
the second expression. Otherwise the value is the third
expression.

7 May be either a part of a procedural or continuous statement. =>
Conditional operator can be used both in behavioural and gate
level structural modelling.

0 Example:

Quot = (NegDivisor != NegDivident) ? -Quot : Quot;
TKT-1210 Digital design II, Lect 7 44 % Tampere University of Technology
© Teemu Pitkéinen (teemu.pitkanen@tut.fi) Institute of Digital and Computer Systems

L

-

!

2

)4

-

?‘T

1

.
o

g

)4

N

Lk
o

g

N

L

.

N

!

2

Repeat Loop

7 Four different loop statements in Verilog: repeat, for, while, and
forever.

7 In arepeat loop a loop count is given in parenthesis

7 The value of the loop count is determined once at the beginning
of the execution of the loop

7 The loop is executed the given number of times
7 The general form of the repeat is:

repeat (<expression>) <statement>
0 e Example:
repeat (‘DvLen+l)

begin
end
TKT-1210 Digital design II, Lect 7 45 % Tampere University of Technology
© Teemu Pitkéinen (teemu.pitkanen@tut.fi) Institute of Digital and Computer Systems

e el ey

ke

.

o
Ll

f

.

o
Ll

X

—
'n'i'

TRl R

For Loop

7 Has an initialized loop counter
::= for (<assignment>;<expression>;<assignment>)

<statement>

1 The first assignment is executed once at the beginning of the
loop (before the body of the loop)

1 The expression is executed before the body of the loop
7 Execution stays in the loop while the expression is TRUE
7 The second assignment is executed after the body of the loop
0 Example:
for (i=16; 1; 1i=i-1)
begin
/* statement (s) */

end

TKT-1210 Digital design II, Lect 7 46 % Tampere University of Technology
© Teemu Pitkéinen (teemu.pitkanen@tut.fi) Institute of Digital and Computer Systems

While Loop

o Also a constant number of iterations
::= while (<expression>) <statement>
0 If the expression is TRUE, the statement is executed

o Example:
1= 16;
while (1)
begin
// statement

i = 1-1;

end

7 The while statement should not be used to wait for a change in a
value generated external to its always statement

TKT-1210 Digital design II, Lect 7 47 % Tampere University of Technology
© Teemu Pitkéinen (teemu.pitkanen@tut.fi) Institute of Digital and Computer Systems

R

o3 Fpeied];

by eyied

o9 o

aeqindi] e

Forever Loop

7 The forever loop loops forever
7 The general form:
::= forever <statement>

o Example:
0/l an abstract microprocessor model

always
begin
PowerOninitializations;
forever
begin
FetchAndExecute
end

end

TKT-1210 Digital design II, Lect 7 48 $ Tampere University of Technology
© Teemu Pitkéinen (teemu.pitkanen@tut.fi) Institute of Digital and Computer Systems

Exiting Loops on Exceptional Conditions

7 Any of the loop statements may be exited through use of the
disable statement

7 A disable statement terminates any named begin-end block and
execution then begins with the statement following the block

7 Begin-end blocks may be named by placing the name of the
block after a colon following the begin keyword:

begin : break
for (i=0; 1 < n; 1=i+1)
begin : continue
if (a==0)

disable continue //proceed with i=1i+1

if (a == b)
disable break; //exit for loop

end
end
TKT-1210 Digital design II, Lect 7 49 % Tampere University of Technology
© Teemu Pitkéinen (teemu.pitkanen@tut.fi) Institute of Digital and Computer Systems

o)

L

.

oY

[K.]
flet

Nl

«

Al

i

[K.]
flet

Nl

«

Al

ﬂ\ﬂ_ﬂ T :

K

L

Verilog simulation

In theory...

Each always and initial statement is simulated as a separate
process, one at time.

Once started, the simulator continues executing a process until
either a delay control (#), a wait with a FALSE condition, or an
event (@) statement is encountered.

In those cases, the simulator stops executing the process and
finds the next item in the time queue.

A while statement will never stop the simulator from executing
the process.

=> the while statement that waits for an external variable to
change will cause the simulator to go into a endless loop

— the process that controls external variable will never get a chance
to change it

Also wait statement can go into a endless loop

TKT-1210 Digital design II, Lect 7 50 $ Tampere University of Technology

.

© Teemu Pitkéinen (teemu.pitkanen@tut.fi)

—a
594

Institute of Digital and Computer Systems

