
TKT-1210 Digital design II, Lect 7
© Teemu Pitkänen (teemu.pitkanen@tut.fi)

1 Tampere University of Technology
Institute of Digital and Computer Systems

Verilog Basics

Teemu Pitkänen
Teemu.pitkanen@tut.fi
TH318
(03) 3115 4778

TKT-1210 Digital design II, Lect 7
© Teemu Pitkänen (teemu.pitkanen@tut.fi)

2 Tampere University of Technology
Institute of Digital and Computer Systems

Outline
◆ Modules
◆ Logic level modelling
◆ Design hierarchy
◆ Behavioural modelling
◆ Concurrent processes
◆ Parameters
◆ Switch level modelling
◆ ...

◆ Source: The Verilog Hardware Description Language, 2nd
Edition. D. E. Thomas and P. R. Moorby. 1995.

TKT-1210 Digital design II, Lect 7
© Teemu Pitkänen (teemu.pitkanen@tut.fi)

3 Tampere University of Technology
Institute of Digital and Computer Systems

Introduction
◆ Verilog was developed around 1983 at Gateway Design

Automation (later a part of Cadence) by Phil Moorby.
◆ Was first used in a simulator.
◆ Language was opened to the public in 1980.
◆ Much like C
◆ Case sensitive
◆ Key elements:

– modules
– behavioural modelling
– continuous assignments
– hierarchy
– component instantiation
– ...

TKT-1210 Digital design II, Lect 7
© Teemu Pitkänen (teemu.pitkanen@tut.fi)

4 Tampere University of Technology
Institute of Digital and Computer Systems

Module
◆ Verilog describes a digital system as a set of modules.
◆ Each module has an interface and a description off its contents.
◆ There can be an module without inputs or outputs.

module <module_name>(<port_names>);
endmodule

◆ Example:
module Nand(q, a, b);
output q;
input a, b;

nand (q, a, b);
endmodule

TKT-1210 Digital design II, Lect 7
© Teemu Pitkänen (teemu.pitkanen@tut.fi)

5 Tampere University of Technology
Institute of Digital and Computer Systems

Gate Level Modelling

◆ Describes the circuit in terms of interconnections of logic
primitives (ANDs, ORs, ...).

◆ Verilog provides gate level primitives for the standard logic
functions.
– and, nand, nor, or, xor, xnor (standard logic functions)
– buf (buffer)
– not (inverter)
– bufif0, bufif1, notif0, notif1 (buf and not with a tristate enable input)
– nmos, pmos, cmos, rnmos, rpmos, rcmos, tran, tranif0, tanif1, rtran,

rtranif0, rtranif1, pullup, pulldown (transistor switch level models)
◆ Standard logic functions has a single output or bidirectional

port and any number of inputs.
◆ The output is the first one in the gate instantiations.

TKT-1210 Digital design II, Lect 7
© Teemu Pitkänen (teemu.pitkanen@tut.fi)

6 Tampere University of Technology
Institute of Digital and Computer Systems

Gate Level Modelling (2)

◆ Buf and not may have any number of outputs. The only inout is listed
last.

◆ Example:
module GateLevel(COut, Sum, A, B, CIn);

output COut, Sum;
input A, B, CIn;
wire x2;

nand (x2, A, B),
 (COut, x2, x8);

xnor (x9, x5, x6);
nor (x5, x1, x3),

 (x1, A, B);
or (x8, x1, x7);
not (Sum, x9),

(x3, x2),
(x6, x4),
(x4, CIn),
(x7, x6);

endmodule

TKT-1210 Digital design II, Lect 7
© Teemu Pitkänen (teemu.pitkanen@tut.fi)

7 Tampere University of Technology
Institute of Digital and Computer Systems

Gate Level Modelling (3)

◆ The general syntax for gate instantiation:
<GATETYPE> <drive_strength> <delay> <gate_instance>,
<gate_instance>;

◆ where
– <GATETYPE> is one the gate level primitives
– <gate_instance> ::= <name_of_gate_instance> (<terminal>,

 <terminal>)
– <name_of_gate_instance> ::= identifier

TKT-1210 Digital design II, Lect 7
© Teemu Pitkänen (teemu.pitkanen@tut.fi)

8 Tampere University of Technology
Institute of Digital and Computer Systems

Gate Level Modelling (4)

◆ Example:
nand Name1(Out1, AIn, BIn),

OtherName(COut, x12, x1);
◆ Nand gates with drive strenght and simulation delay:

nand (strong0, strong1) #3
Name1(Out1, AIn, BIn),
OtherName(COut, x12, x1);

◆ When drive strength and/or delay is given, it applies to all the
defined instances in the comma-separated list.

◆ To change one or both these qualifiers, the gate instantiation
must be ended (with a “;”) and restarted.

TKT-1210 Digital design II, Lect 7
© Teemu Pitkänen (teemu.pitkanen@tut.fi)

9 Tampere University of Technology
Institute of Digital and Computer Systems

Nets

◆ Nets do not store values.
◆ Net of type wire which have a delay:

wire #3 x2;

◆ # indicates delay.
◆ Delay could include both rise fall time specifications.
◆ Example transition to 1 has a delay of 3 units and the fall to 0

has a delay of 5:

wire #(3,5) x2;

◆ Nets can also be declared implicit!
– when modules are connected with nets

TKT-1210 Digital design II, Lect 7
© Teemu Pitkänen (teemu.pitkanen@tut.fi)

10 Tampere University of Technology
Institute of Digital and Computer Systems

Nets (2)

◆ Other net types than wires can be used.

◆ Example, AND-port and wired-AND (wand):
– AND-port treats a z on its inputs as an X.
– wand will pass z on its input

TKT-1210 Digital design II, Lect 7
© Teemu Pitkänen (teemu.pitkanen@tut.fi)

11 Tampere University of Technology
Institute of Digital and Computer Systems

Registers

◆ Registers are abstractions of storage devices found in real
system.

◆ Registers are defined with the reg keyword.
◆ Size is optionally given. The default size is one.
◆ Example:

reg TempBit;
– defines a single bit register named TempBit

reg [15:0] TempNumber;
– defines a 16-bit register

reg [0:15] TempNumber2;
– defines also a 16-bit register

TKT-1210 Digital design II, Lect 7
© Teemu Pitkänen (teemu.pitkanen@tut.fi)

12 Tampere University of Technology
Institute of Digital and Computer Systems

Registers (2)

◆ Both bit-select and part-select can be used.

reg [11:0] counter;
reg a;
reg [2:0] b;

a = counter[7]; // bit seven is loaded into a
b = counter[4:2] // bits 4, 3, and 2 are loaded into b

◆ Notice the comment style: // starts a comment

TKT-1210 Digital design II, Lect 7
© Teemu Pitkänen (teemu.pitkanen@tut.fi)

13 Tampere University of Technology
Institute of Digital and Computer Systems

Port S pecifications

◆ An input port specifies the internal name for a vector or scalar
that is driven by external entity.

◆ An output port specifies the internal name for a vector or scalar
which is driven by an internal entity is available external to the
module.

◆ An inout port specifies the internal name for a vector or scalar
that can be driven either by an internal or external entity.

◆ Input or inout port cannot be declared to be of type register.
◆ These port types may be read into register using a procedural

assignment, used on the right-hand side of a continuous
assignment, or used as input to instantiated modules or gates.

TKT-1210 Digital design II, Lect 7
© Teemu Pitkänen (teemu.pitkanen@tut.fi)

14 Tampere University of Technology
Institute of Digital and Computer Systems

Port S pecifications (2)

◆ A module’s ports are normally connected at the in the order in
which they are defined.

◆ Connection can be done also by naming the port and giving its
connection.

◆ Example:
module AndOfComplements(a, b, c, d);
 input a, b;
 output c, d;
 wand c;
 wand d;

 not(c, a);
 not(c, b);
 not(d, a);
 not(d, b);
endmodule

TKT-1210 Digital design II, Lect 7
© Teemu Pitkänen (teemu.pitkanen@tut.fi)

15 Tampere University of Technology
Institute of Digital and Computer Systems

Port S pecifications (3)

module Ace;
wire r, t;
reg q, s;
AndOfComplements m1(.b(s), .a(q), .c(r), .d(t));

endmodule
◆ Port b of instance m1 of module AndOfComplements will be

connected to the output of register s, port a to the output of
register q, and so on.

◆ The connections may be listed in any order.

TKT-1210 Digital design II, Lect 7
© Teemu Pitkänen (teemu.pitkanen@tut.fi)

16 Tampere University of Technology
Institute of Digital and Computer Systems

Continuous Ass ignment

◆ Abstractly model combinational HW driving values onto nets.
◆ assign statement

module GateLevel2(COut, Sum, A, B, CIn);
output COut, Sum;
input A, B, CIn;

assign Sum = A ^ B ^ CIn,
 COut = (A & B) | (B & CIn) | (A & CIn);

endmodule

TKT-1210 Digital design II, Lect 7
© Teemu Pitkänen (teemu.pitkanen@tut.fi)

17 Tampere University of Technology
Institute of Digital and Computer Systems

Continuous Ass ignment (2)

◆ Continuous assignment is always active. If any input to the
assign statement changes at any time, the assign statement will
be re-evaluated and the output will be propagated.

◆ The general form of the assign statement is:
assign <drive_strength> <delay> <list_of_assignments>;

◆ drive_strength and delay are optional
◆ Example:

assign #5
 Sum = A ^ B ^ CIn,
 COut = (A & B) | (B & CIn) | (A & CIn);

◆ The final gate level implementation is left to a synthesis
program.

TKT-1210 Digital design II, Lect 7
© Teemu Pitkänen (teemu.pitkanen@tut.fi)

18 Tampere University of Technology
Institute of Digital and Computer Systems

Logical Operators

TKT-1210 Digital design II, Lect 7
© Teemu Pitkänen (teemu.pitkanen@tut.fi)

19 Tampere University of Technology
Institute of Digital and Computer Systems

Logical Operators (2)

◆ Unary reduction and binary bitwise operators are distinguished
by syntax.

TKT-1210 Digital design II, Lect 7
© Teemu Pitkänen (teemu.pitkanen@tut.fi)

20 Tampere University of Technology
Institute of Digital and Computer Systems

Logical Operators (3)

TKT-1210 Digital design II, Lect 7
© Teemu Pitkänen (teemu.pitkanen@tut.fi)

21 Tampere University of Technology
Institute of Digital and Computer Systems

Operator Precedence

TKT-1210 Digital design II, Lect 7
© Teemu Pitkänen (teemu.pitkanen@tut.fi)

22 Tampere University of Technology
Institute of Digital and Computer Systems

Behavioural Modelling of Combinational
Circuits
◆ The right-hand side expression in the assign statement may

contain a function call.
◆ Within a function, procedural statements such as case and

looping statements may occur. However, function may not
contain control statements such as event checks. => no
sequential structures

◆ Example:
module Multiplexor(A, B, C, D, Select, E);
 input A, B, C, D;
 input [1:0]Select;
 output E;

 assign E = mux(A, B, C, D, Select);

TKT-1210 Digital design II, Lect 7
© Teemu Pitkänen (teemu.pitkanen@tut.fi)

23 Tampere University of Technology
Institute of Digital and Computer Systems

Behavioural Modelling of Combinational
Circuits (2)
◆ Example continues...

function mux;
input A, B, C, D;
input [1:0]Select;
case(Select)
2’b00: mux = A;
2’b01: mux = B;
2’b10: mux = C;
2’b11: mux = D;
default: mux =’bx;

endcase
endfunction

endmodule

TKT-1210 Digital design II, Lect 7
© Teemu Pitkänen (teemu.pitkanen@tut.fi)

24 Tampere University of Technology
Institute of Digital and Computer Systems

Net and Continuous Ass ignment

◆ A shorthand way to specify a value to be driven onto a net is
combine the net and assign definition statements.

module ModXor(AXorB, A, B);
 output [7:0] AXorB;
 input [7:0] A, B;
 wire [7:0] #5 AXorB = A ^ B;
endmodule

◆ The delay (#5) specifies the delay involved in the XOR-port, not
in the wire drivers.

◆ If the wire and XOR had been declared separately, a separate
delay could gave assigned to the wire drivers:

wire [7:0] #10 AXorB;
assign #5 AXorB = A ^ B;

TKT-1210 Digital design II, Lect 7
© Teemu Pitkänen (teemu.pitkanen@tut.fi)

25 Tampere University of Technology
Institute of Digital and Computer Systems

Parameters

◆ Parameters allow us to define generic module.
◆ Keyword parameter
◆ Example:

module XorX(XOut, XIn1, XIn2);
 parameter width = 4,
 delay = 10;
 output [1:width] XOut;
 input [1:width] XIn1, XIn2;

 assign #delay XOut = XIn1 ^ XIn2;
endmodule

◆ Instantiation of the parameterized module:
– XorX #(8, 0) x1(D, A, B);

TKT-1210 Digital design II, Lect 7
© Teemu Pitkänen (teemu.pitkanen@tut.fi)

26 Tampere University of Technology
Institute of Digital and Computer Systems

Parameters (2)

◆ The #(8, 0) specifies that the value of the first parameter (width)
is 8 for this case, and the value of the second parameter (delay)
is 0.

◆ If the #(8, 0) was omitted in the instantiation, the values
specified in the module definition would be used as a default
values.

◆ The general form is specifying parameter values is:
<name_of_module> <parameter_value_assignments>
<module_instance> <module_instance>;

◆ The order of the overriding values follows the order the
parameter specification in the module’s definition.

◆ It is not possible to skip over some parameters in a module
definition and respecify the rest.

TKT-1210 Digital design II, Lect 7
© Teemu Pitkänen (teemu.pitkanen@tut.fi)

27 Tampere University of Technology
Institute of Digital and Computer Systems

Parameters (3)

◆ Another approach to overriding the parameters in a module
definition is to use the defparam statement.

◆ Not supported, e.g. by Synopsys synthesis.
◆ Using that statement, all of the respecifications of parameters

can be grouped into one place within the description.
module Xors(A1, A2);
output [3:0] A1, A2;
reg [3:0] B1, C1, B2, C2;

XorX A(A1, B1, C1),
 B(A2, B2, C2);

endmodule

module Annotate;
defparam
 Xors.B.width = 8;

endmodule

TKT-1210 Digital design II, Lect 7
© Teemu Pitkänen (teemu.pitkanen@tut.fi)

28 Tampere University of Technology
Institute of Digital and Computer Systems

Logic Delay Modelling

◆ Example circuit:
module TriStateLatch(QOut, NQOut, Clock, Data, Enable);

output QOut, NQOut;
input Clock, Data, Enable;
tri QOut, NQOut;

not #5 (NData, Data);
nand #(3,5) N1(WA, Data, Clock),

 N2(WB, NData, Clock);
nand #(12,15) N3(Q, NQ, WA),

 N4(NQ, Q, WB);
bufif1 #(3, 7, 13) QDrive(QOut, Q, Enable),

 NQDrive(NQOut, NQ, Enable);
endmodule

TKT-1210 Digital design II, Lect 7
© Teemu Pitkänen (teemu.pitkanen@tut.fi)

29 Tampere University of Technology
Institute of Digital and Computer Systems

Logic Delay Modelling (2)

◆ Gate delays:
– delays are specified in terms of the transition to 1, the transition to

0, and the transition to z
– the default delay is zero
– e.g., bufif1 #(3,7,13) has a rising delay of 3, falling delay of 7, and a

delay to the high impedance value of 13
◆ Generally the delay specification takes the form of:

– #(d1, d2, d3), where d1 is the raising delay, d2 the failing delay and
d3 the delay to the high impedance value.

◆ If one delay parameter is specified, then the value is used for all
delays

TKT-1210 Digital design II, Lect 7
© Teemu Pitkänen (teemu.pitkanen@tut.fi)

30 Tampere University of Technology
Institute of Digital and Computer Systems

Verilog Numbers

◆ Constant numbers can be specified in decimal, hexadecimal,
octal, or binary

◆ A number can be given one of two forms.
◆ The 1st form is an unsized decimal number specified using the

digits from the sequence 0 to 9.
– Verilog calculates a size and the appropriate number of bits,

starting from the least significant bit, are selected for use.
◆ The 2nd form specifies the size of the constant and takes the

form:
ss...s ‘f nn...n

◆ where:

TKT-1210 Digital design II, Lect 7
© Teemu Pitkänen (teemu.pitkanen@tut.fi)

31 Tampere University of Technology
Institute of Digital and Computer Systems

Verilog Numbers (2)

ss...s is the size in bits of the constant. The size is specified as a
decimal number.

‘f is the base format. The f is replaced by one of the single letters:
d (decimal), h (hexadecimal), o (octal), or b (binary). The letters
may also be capitalized.

nn...n is the value of the constant with allowable digits. For the
hexadecimal base, the letters a through f may also be
capitalized.

◆ An underline character may be inserted into a number (of any
base) to improve readability. It must not be the first character of
a number.
=> 0x0x_1101_ 0zx1 is the same than 0x0x1101 0zx1

TKT-1210 Digital design II, Lect 7
© Teemu Pitkänen (teemu.pitkanen@tut.fi)

32 Tampere University of Technology
Institute of Digital and Computer Systems

Verilog Numbers (3)

◆ Examples (unsized):
792 // a decimal number
7d9 // ILLEGAL, hexadecimal must be specified with ‘h
‘h 7d9 // an unsized hexadecimal number
‘o 7746 // an unsized octal number

◆ Examples (sized):
12 ‘h x // a 12 bit unknown number
10 ‘d 17 // a 10 bit constant with the value 17
4 ‘b 110z // a 4 bit binary number

TKT-1210 Digital design II, Lect 7
© Teemu Pitkänen (teemu.pitkanen@tut.fi)

33 Tampere University of Technology
Institute of Digital and Computer Systems

Initial S tatement

◆ The initial statement describes a process.
◆ Is executed only once.
◆ The initial statement provides a means of initiating input

waveforms and initializing simulation variables before the actual
description begins.

◆ Once the statements in the initial are exhausted, statement
becomes inactive

module ffNandSim;
 reg preset, clear;
 ...
 initial
 begin
 #10 preset = 0; clear = 1;
 #10 preset = 1;
 #10 clear = 0;
 #10 clear = 1;
 end
endmodule

TKT-1210 Digital design II, Lect 7
© Teemu Pitkänen (teemu.pitkanen@tut.fi)

34 Tampere University of Technology
Institute of Digital and Computer Systems

Always S tatement

◆ The basic Verilog statement for a process is the always
statement.

◆ It continuously repeats its statement, never exiting or stopping
◆ A behavioural Verilog model can contain one or more always

statements.
◆ A module without always statement is purely a specification of

hierarchical structure.
◆ Example:

module ClockGen(Clock);
 output Clock;
 reg Clock;

 initial
 #5 Clock = 1;
 always
 #50 Clock = ~Clock;
endmodule

TKT-1210 Digital design II, Lect 7
© Teemu Pitkänen (teemu.pitkanen@tut.fi)

35 Tampere University of Technology
Institute of Digital and Computer Systems

Always S tatement (2)

◆ At the start, the output has the value x.
◆ After 5 time units have passed, the output is initialized to be

one.
◆ After the 1st 50 time units have passed, the always statement

executes.

TKT-1210 Digital design II, Lect 7
© Teemu Pitkänen (teemu.pitkanen@tut.fi)

36 Tampere University of Technology
Institute of Digital and Computer Systems

Edge S ens itive Process

◆ Event control construct: @
◆ The event control watch for a situation that is generated by an

external process.
◆ Watch for a change in a value -> edge sensitive

module DFlipFlop(Q, Clk, Data);
 output Q;
 reg Q;
 input Clk, Data;

 initial Q = 0;
 always @(negedge Clk) Q = Data;
endmodule

◆ Q will be loaded with the value on the Data when there is a
negative edge on the Clk-port.

TKT-1210 Digital design II, Lect 7
© Teemu Pitkänen (teemu.pitkanen@tut.fi)

37 Tampere University of Technology
Institute of Digital and Computer Systems

Edge S ens itive Process (2)

◆ In addition to specifying a negative edge to trigger on, also a
positive edge can be specified:

always @(posedge Foo) Out1 = In2;
◆ Or we can watch for any change:

@(ControlSignal) Out2 = In1;
◆ The watched instance can be a gate output, a wire or a register

whose value is generated as a activity in another process.
◆ Any number of events can be expressed in the event control

statement such that the occurence of any one of them will
trigger the execution of the statement.

@(posedge InputA or posedge Timer) ...

TKT-1210 Digital design II, Lect 7
© Teemu Pitkänen (teemu.pitkanen@tut.fi)

38 Tampere University of Technology
Institute of Digital and Computer Systems

Wait S tatement

◆ Wait statement waits for its conditional expression to become
true.

◆ Level sensitive
◆ Primary for synchronizing two concurrent processes.

module WaitModule(DataOut, DataIn, Ready);
output [7:0] DataOut;
input [7:0] DataIn;
input Ready;
reg Internal;

always
begin
wait(Ready)
Internal = DataIn;
...

end
endmodule

TKT-1210 Digital design II, Lect 7
© Teemu Pitkänen (teemu.pitkanen@tut.fi)

39 Tampere University of Technology
Institute of Digital and Computer Systems

‘define Directive

◆ Compiler directive ‘define defines a value and gives a constant
textual value to it.

◆ On compilation the text value will be substituted.
`define DvLen 15
`define DdLen 31
`define QLen 15
`define hiDdMin 16

module Divide(DdInput, DvInput, Quotient, Go, Done);
input [`DdLen:0] DdInput;
input [`DvLen:0] DvInput;
output [`QLen:0] Quotient;

TKT-1210 Digital design II, Lect 7
© Teemu Pitkänen (teemu.pitkanen@tut.fi)

40 Tampere University of Technology
Institute of Digital and Computer Systems

If-Then-Else

◆ Purely procedural operator (for behavioural modelling). It may
appear only in the body of an initial or always statement, or in a
subprogram.

◆ If statement can be with or without an else clause.
if (<expression>)
 <statement_or_null>
else
 <statement_or_null>

◆ Example (no else):
if (NegDivisor)
 Divisor = -Divisor;

◆ Example (with else):
if (!Divident[`DdLen])
Quotient = Quotient+1;

else
Divident[`DdLen:`HiDdMin] = Divident[`DdLen:`HiDdMin] + Divisor;

TKT-1210 Digital design II, Lect 7
© Teemu Pitkänen (teemu.pitkanen@tut.fi)

41 Tampere University of Technology
Institute of Digital and Computer Systems

If-Then-Else (2)

◆ The else clause is paired with the nearest, unfinished
if statement.

◆ The begin-end block following the if statement allows
all of the encompassed statements to be considered
as part of the then statement of the if.

if (Divisor)
begin
NegDivisor = Divisor[`DvLen];
if (NegDivisor)
Divisor = -Divisor;

if (!Divident[`DdLen])
Quotient = Quotient+1;

else
Divident[`DdLen:`HiDdMin] = Divident[`DdLen:`HiDdMin] +

Divisor;
end

TKT-1210 Digital design II, Lect 7
© Teemu Pitkänen (teemu.pitkanen@tut.fi)

42 Tampere University of Technology
Institute of Digital and Computer Systems

Relational Operators

TKT-1210 Digital design II, Lect 7
© Teemu Pitkänen (teemu.pitkanen@tut.fi)

43 Tampere University of Technology
Institute of Digital and Computer Systems

Relational Operators (2)

4 ‘b 110z == 4 ‘b110z => FALSE
4 ‘b 110z === 4 ‘b 110z => TRUE

TKT-1210 Digital design II, Lect 7
© Teemu Pitkänen (teemu.pitkanen@tut.fi)

44 Tampere University of Technology
Institute of Digital and Computer Systems

Conditional Operator

◆ The conditional operator (?:) can be used in place of the if
statement when one of two values is to be selected for
assignment.

◆ The general form of the conditional operator is:
:: = <expression> ? <expression> : <expression>

◆ If the first expression is TRUE, then the value of the operator is
the second expression. Otherwise the value is the third
expression.

◆ May be either a part of a procedural or continuous statement. =>
Conditional operator can be used both in behavioural and gate
level structural modelling.

◆ Example:
Quot = (NegDivisor != NegDivident) ? -Quot : Quot;

TKT-1210 Digital design II, Lect 7
© Teemu Pitkänen (teemu.pitkanen@tut.fi)

45 Tampere University of Technology
Institute of Digital and Computer Systems

Repeat Loop

◆ Four different loop statements in Verilog: repeat, for, while, and
forever.

◆ In a repeat loop a loop count is given in parenthesis
◆ The value of the loop count is determined once at the beginning

of the execution of the loop
◆ The loop is executed the given number of times
◆ The general form of the repeat is:

repeat (<expression>) <statement>
◆ • Example:

repeat (‘DvLen+1)
 begin
 ...
 end

TKT-1210 Digital design II, Lect 7
© Teemu Pitkänen (teemu.pitkanen@tut.fi)

46 Tampere University of Technology
Institute of Digital and Computer Systems

For Loop

◆ Has an initialized loop counter
::= for (<assignment>;<expression>;<assignment>)
 <statement>

◆ The first assignment is executed once at the beginning of the
loop (before the body of the loop)

◆ The expression is executed before the body of the loop
◆ Execution stays in the loop while the expression is TRUE
◆ The second assignment is executed after the body of the loop
◆ Example:

for (i=16; i; i=i-1)
begin

 /* statement(s) */
end

TKT-1210 Digital design II, Lect 7
© Teemu Pitkänen (teemu.pitkanen@tut.fi)

47 Tampere University of Technology
Institute of Digital and Computer Systems

While Loop

◆ Also a constant number of iterations
::= while (<expression>) <statement>

◆ If the expression is TRUE, the statement is executed
◆ Example:

i = 16;
while(i)
begin

 // statement
 i = i-1;
end

◆ The while statement should not be used to wait for a change in a
value generated external to its always statement

TKT-1210 Digital design II, Lect 7
© Teemu Pitkänen (teemu.pitkanen@tut.fi)

48 Tampere University of Technology
Institute of Digital and Computer Systems

Forever Loop

◆ The forever loop loops forever
◆ The general form:

::= forever <statement>
◆ Example:
◆ // an abstract microprocessor model

always
begin
 PowerOninitializations;
 forever
 begin
 FetchAndExecute
 end
end

TKT-1210 Digital design II, Lect 7
© Teemu Pitkänen (teemu.pitkanen@tut.fi)

49 Tampere University of Technology
Institute of Digital and Computer Systems

Exiting Loops on Exceptional Conditions

◆ Any of the loop statements may be exited through use of the
disable statement

◆ A disable statement terminates any named begin-end block and
execution then begins with the statement following the block

◆ Begin-end blocks may be named by placing the name of the
block after a colon following the begin keyword:

begin : break
 for (i=0; i < n; i=i+1)
 begin : continue
 if (a==0)
 disable continue //proceed with i=i+1
 ...
 if (a == b)
 disable break; //exit for loop
 ...
 end
end

TKT-1210 Digital design II, Lect 7
© Teemu Pitkänen (teemu.pitkanen@tut.fi)

50 Tampere University of Technology
Institute of Digital and Computer Systems

Verilog s imulation

◆ In theory...
◆ Each always and initial statement is simulated as a separate

process, one at time.
◆ Once started, the simulator continues executing a process until

either a delay control (#), a wait with a FALSE condition, or an
event (@) statement is encountered.

◆ In those cases, the simulator stops executing the process and
finds the next item in the time queue.

◆ A while statement will never stop the simulator from executing
the process.
=> the while statement that waits for an external variable to
change will cause the simulator to go into a endless loop
– the process that controls external variable will never get a chance

to change it
◆ Also wait statement can go into a endless loop

