By Joshu&Cantrell Page <1>
jic@icsl.ucla.edu

Verilog Tutorial

Introduction

Verilog allows us to describe a system based on a structure of wires, gates, registers, and
delays using a systematic language. This language is unlike most other programming languages,
where they read like steps in a recipe. Inst¥ad]og is written so that most components
respond in parallel, simultaneously.

First Verilog Program

By using your favorite text processor, you can typ€énilog code to be run using
Verilog and simulated iSignalScan.The simplest type dferilog code is similar to that found in
listing 1.

/I Listing 1: Simple Verilog Code.
module top();
wire out;
reg a, b;

assignout=a & b;

initial
begin
a=1'b0;
b =1'b0;
#10;
a=1'b0;
b=1b1;
#10;
a=1b1;
b =1'bl;
#10;
a=1bl;
b =1'b0;
#10;
$dumpflush;
end

initial
begin
$monitor("a=%b, b=%b, out=%b, time=%t\n", a, b, out, $time);
$dumpfile("top.dump™);
$dumpvars(5, top);
end
endmodule

By Joshu&Cantrell Page <2>
jic@icsl.ucla.edu

Comments
Let's start by examining the code step by step. The first line is a comment defined by the
two slashes. In any program, anything that follows two slashes is ignoxatilng.

Modules

Modules are what define component¥grilog. They are remarkably similar to functions
or procedures in other languages because given input, they can produce specific output. The
module showntop, has no input and output, making it self contained. It will be the first module
evaluated wheNerilog is run because of this.

A more general module follows the following form:

module modulename(inl, in2, ..., inoutl, outl, ...)
input inl, in2, ..;

inout inoutl, ..

output outl, ..;

<nodul e body or text>

endmodule

Themodulename can be replaced with any name of the module. Although the inputs,
input/outputs, and outputs can be placed in any order within the module's parameters, it is good
to be consistent where you place them within the list. The keywaopis, inout, andoutput are

used to define the direction that data can flow through the node named by the parameter. These
keywords are used just like thére andreg keywords which we'll discuss in more depth later.
Themodule body or text is a list of expressions that define the system. Modules are always
terminated by the keywordndmodule.

Defining Wires and Registers

In this example, single bit wires and registers are used, althérgbg allowsmulti-bit
sized wires (buses) and registers to be defined. Wires, registers, inputs, input/outputs, and
outputs are all defined in the same fashion. The only difference being the keyword used.

input a, b;

output [2:0] out;

wire wirel, wire2, a,b;
wire [7:0] byte;

reg [31:0] wordreg;

A name by itself represents a single bit, or wire node. To produce buses, or larger arrays
of bits, the bracketed expression is placed before the nigh@. defines 3 bits, 2 through 0.
[7:0] defines 8 bits, 7 through 31:0] defines 32 bits, 31 through 0.

Registers and wires cannot be used everywhere. In the simple prograsra wire, and
aandb are registers. This is required becangeappears at the left hand side ofaasign
expression, and andb appear at the left hand side of '=' signs inititéal expression. We'll
cover this in more detail later.

By Joshu&Cantrell Page <3>
jic@icsl.ucla.edu

The Assign (Declar ative) Expression

Theassign expression can have registers and wires as inputs into the expression on the
right hand side of the '=' sign, but only wires on the left hand side of the '=' sign. This is due to the
fact that the value at left is dependent on the values on the right at all times. This also means that
a particular wire can only be found once on the left side of the '=' once wétsigm Having a
wire assigned more than one valwould be contradictory in nature.

assignout=a & b;
assign Cin[7:0] = {Cout[6:0], ~aluAdd};
assign Cout = Gen| (Prop & Cin);

In assign expressions, logic, and in some cases, arithmetic, can be used. The following are valid
bitwise logic operators|, &, *, and~, which areor, and, xor, andnot respectively.

Note the use o€in[7:0]. This refers to assigning a value to the bits 7 through@rof
If we only desired to set a smaller number bit€iof, we could have wrot€in[5:3] which
would define bits 5 through 3 @fin. The expressiofiCout[6:0], ~aluAdd} defined by the braces
is called a&Concatenation. This allows muiple bits to be put together and treated like a string of
bits. In the example abov€put[6:0] is concatenated with the notatiAdd, soCin[7:1] gets
Cout[6:0] andCin[0] gets~aluAdd.

TheInitial and Always (Procedural) Expressions

Initial andalways are extremely similar to each other. The main difference igniitia
defines events that only happen at the beginning of timeglesagis defines events that happen all
the time a given condition occurs (if no condition is given, it defines a continuously looping list of
events). In these expressions, only registers can be defined on the left hand side of the '=' sign.
This happens because everything withiralavays or initial block takes the inputs as they are and
sets the value. If the inputs change, it takes an '=' signalways or initial block to reset the
register's value, or the value will not change. Compare this sdiym expression whose output
will always change if one of its inputs change.

These are called procedural because they can be set to only happen at certain times or
during particular conditions, whereas tissign defines something that happens continuously.

initial
begin
toggle = 1'b1;
end

always @(a or b)
begin
out=a&b;
toggle = ~toggle;
end

In the above example, theitial block initializes theoggle register at binary 1.The
always block is only called when eitharor b changes values. |If tlexpressiortbggle =

Il cover the number format later.

By Joshu&Cantrell Page <4>
jic@icsl.ucla.edu

~toggle;" had not be added to the always block, it would essentially actkkii out = a & b".
However, now the value ¢dggle flips back and forth whenevaror b change their values.

Always expressions can also be written without any conditions as shown?biidhis
case they need delays or it will be called all the time, even after it finishes being called (causing an
infinite loop).

/1 50% duty cycle clock, 20 time unit period

always
begin
clock = 0;
#10; // Delay control = 10 units
clock = 1;
#10;
end

Numbersin Verilog
Numbers inVerilog follow the form shown in !
figure 1. The first number tell¥'erilog how many bits # U<m._ ue

the number takes up. The character represents the H

of the value representatidmfor hexadecimab for

binary,d for decimal, ana for octal. value of number
base of value representation

16'h1A23 o

14'001101000100011 number of bits in value

20'd6691

Figure 1: Verilog Number Format

All of the Verilog values shown above have the same
decimal value, but each contains a different number of bits and is represented in a different base.

Wire & Procedural Delaysin Verilog

The results of aassign can be delayed from output by a given number of time units.
Although your logic should not be dependent on these delays, it may come in handy if you have
feedback loops which would go unstable without some type of delay. The delay time appears
after the '# mark, and before the equality statement.

assign #3 out=a & b;

This statement would cause the valuewfto output 3 units of time late.

Within initial or always, the delay can be used to separate commands by a specific amount
of time. Each delay is evaluated in sequence and can be used to separates groups of assignments
as shown in the simpherilog code, and the 50% duty cycle clock shown above. If the delay is
on a line by itself, be sure to place a semicolon at the end of the line, or it will be assumed that the
next line is being delayed by the value. (If there is no next line, an error will occur.)

ed example taken from section 2.6.¥eoilog According to Tom.

By Joshu&Cantrell Page <5>
jic@icsl.ucla.edu

Monitoring Values

While testingVerilog code, you will need to make sure values change as you would
expect. This can be done using $in@nitor command inverilog. This sets up a statement
which prints out text every time a value changes, causing the previous output text to become
invalid. The first parameter monitor is a string with text and symbols, likgh, %b, and%t,
which refer to the following parameters, the monitored values.

$monitor("a=%b, b=%b, out=%b, time=%t\n", a, b, out, $time);

The $time variable contains the number of time units that have passed in the simuiétion.
displays a hexadecimal numbgh displays a binary number, aff is specially designed to
display a time value.

The Dump File

To use thesimulatiorSignalScar{or the pasBimWaves)a dump file must be generated.
This is done by using the three commaisdsimpfile, $dumpvars, and$dumpflush. $dumpfile is
used to indicate in what file to put the dump information.

$dumpfile(" simple .dump");

$dumpvars is used to indicate what to dump. In extremely large simulations, dump files may
become huge in extent. In these cases only special variables may want to be included in the dump
file. The first number represents how mamydules to descend into. The following are names of
modules or values to be included in the dump file. In the simple case, the number was made
arbitrarily large and the all inclusitep module was told to be dumped. This should dump

everything into the dump file.

$dumpvars(5, top);

$dumpflush is used whenever new information needs to be forced into the dump file. Because
Verilog quits after running the simple code, it probably is not necessary, but for the sake of
example it has been added to the code.

Running Verilog Code
At the shell prompt, th¥erilog code can be run by typing:

verilog filel.v file2.v fileN.v

Or, if the files filel.v throughfileN.v, are listed in a text file, each residing on a separate line, the
Verilog code can be run by:

verilog -f
The output of the simple code should look similar to:

Compiling source file "simple .v"

By Joshu&Cantrell Page <6>
jic@icsl.ucla.edu

Highest level modules:

top

a=0, b=0, out=0, time= 0

a=0, b=1, out=0, time= 10

a=1, b=1, out=1, time= 20

a=1, b=0, out=0, time= 30

0 simulation events (use +profile or +listcounts option to count)
CPU time: 0.1 secs to compile + 0.0 secs tolink + 0.1 secs in
simulation

End of VERILOG-XL 2.5 Oct 27, 2000

10:43:28

Using Signal Scan to View the Dump File
To useSignalScanread thdJsing Sgnal Scan
With Verilog document.

Examplewith Modules

More complex designs will have multiple
modules. Each module acts like its own component,
or black box, with particular inputs and outputs. Modules can be just liteptheodule shown
above. As an example of a device with multiple modules, we will design an adder. We will have
two modules, a\LU and a register.

Figure 2: Adder w/ 2 modules

/I Listing 2: Adder Verilog Code.

/I ALUmodule

module adder(a, b, sum);
input a, b;
output [1:0] sum;

assign sum={a &b, a”" b};
endmodule

/I Register module

module register(clk, in, out);
input clk;

input [1:0] in;

output [1:0] out;

reg out_reg;

assign out = out_reg;
always @(posedge clk)

begin

out_reg =in;
end

By Joshu&Cantrell
jic@icsl.ucla.edu

endmodule

/I Top module
module top();
wire [1:0] out;
wire [1:0] add_out;
reg a, b, clk;

adder adderl(a, b, add_out);
register regl(clk, add_out, out);

always

begin
clk =1'b0;

#3;
clk =1'b1;

b =1'b0;
#10;
$dumpflush;
$finish;
end

initial
begin
$monitor("a=%b, b=%Db, out=%b, time=%t\n",
$dumpfile("top.dump™);
$dumpvars(5, top);
end
endmodule

a, b, out,

Page <7>

$time);

By Joshu&Cantrell Page <8>
jic@icsl.ucla.edu

The ALU Module

The ALU module is essentially an assign statement whieformsa simple carry adder
arithmetic. Notice the use pf:0] to define a two bit output, and the braces to define a
concatenation.

/I ALU module

module adder(a, b, sum);
input a, b;

output [1:0] sum;

assign sum ={a &b, a " b};
endmodule

The Register Module

This defines a 2-bit register. The input and output are considered wires, so an assignment
is made for theut wire to be equal to the output of the registet, reg. This particulaalways
block is only called when the value @k transitions from low to high, the positive edgecidét

/I Register module

module register(clk, in, out);
input clk;
input [1:0] in;
output [1:0] out;

reg out_reg;
assign out = out_reg;

always @(posedge clk)
begin
out_reg =in;
end
endmodule

The Top Module : Defining Modules

The definitions of théLU and register modules are incomplete because they don't have
any specific inputs and outputs. éBe definitions are primarily blue prints for making
components which look and act ae thue print specifies. In thep module, the definitions are
finished by giving them a component name and attaching wires or registers to them.

adder adderl(a, b, add_out);
register regl(clk, add_out, out);

The first name is the blue print name. The second name is the realized component name, and the
values within the parenthesis are the connected wires or registers.

bl ueprint conponent (wirel, wire2, .., wi r eN);

By Joshu&Cantrell Page <9>
jic@icsl.ucla.edu

TheTop Module: Always Block

Thealways block in the top module is used to generate a clock to test the functionality of
the register. Ever 3 time units, it transitions to a new value. Because it doesn't have a condition
when thealways is to begin, it simple makes an infinite loop.

always
begin
clk =1'b0;
#3;
clk =1'b1;
#3;
end

The Top Module: $finish

At the end of thénitial block with the test input§finish is added to teNerilog the
simulation is completedVerilog would otherwise continue simulating because the clock
continues to transition indefinitely. In order to creatéedlog prompt for testing$stop, can be
used instead.

The Adder Output
The output of the adder should look as shown below. Notice how the register causes the
output to only transition at the positive edgecléf

Compiling source file "adder.v"

Highest level modules:

top

a=0, b=0, out=xx, time= 0

a=0, b=0, out=00, time= 3

a=0, b=1, out=00, time= 20

a=0, b=1, out=01, time= 21

a=1, b=1, out=01, time= 30

a=1, b=1, out=00, time= 33

a=1, b=0, out=00, time= 40

a=1, b=0, out=01, time= 45

L63 "adder.v'": $finish at simulation time 50

0 simulation events (use +profile or +listcounts option to count)
CPU time: 0.1 secs to compile + 0.0 secs tolink + 0.1 secs in
simulation

End of VERILOG-XL 2.5 Oct 27,2000 11:29:10

