
V
erilog T

utorial
Introduction

V
erilog allow

s us to describe a system
 based on a structure of w

ires, gates, registers, and
delays using a system

atic language. T
his language is unlike m

ost other program
m

ing languages,
w

here they read like steps in a recipe. Instead,
V

erilog is w
ritten so that m

ost com
ponents

respond in parallel, sim
ultaneously.

F
irst V

erilog P
rogram

B
y using your favorite text processor, you can type in

V
erilog code to be run using

V
erilog and sim

ulated in SignalS
can. T

he sim
plest type of

V
erilog code is sim

ilar to that found in
listing 1.

// L
istin

g
 1

: S
im

p
le

V

e
rilo

g
 C

o
d

e
.

m
o

d
u

le
 to

p
();

 w
ire

 o
u

t;

re
g

 a
, b

;

 a
ssig

n
 o

u
t =

 a
 &

 b
;

 in
itia

l
 b

e
g

in
 a

 =
 1

'b
0

;
 b

 =
 1

'b
0

;
 #

1
0

;
 a

 =
 1

'b
0

;
 b

 =
 1

'b
1

;
 #

1
0

;
 a

 =
 1

'b
1

;
 b

 =
 1

'b
1

;
 #

1
0

;
 a

 =
 1

'b
1

;
 b

 =
 1

'b
0

;
 #

1
0

;

$
d

u
m

p
flu

sh
;

 e
n

d

 in
itia

l
 b

e
g

in

$
m

o
n

ito
r("a

=
%

b
,

b

=
%

b
,

o
u

t=
%

b
,

tim

e
=

%
t\n

",
 a

, b
, o

u
t,

$
tim

e
);

$

d
u

m
p

file
("to

p
.d

u
m

p
");

$

d
u

m
p

va
rs(5

,
 to

p
);

 e
n

d
e

n
d

m
o

d
u

le

B
y Joshua Cantrell

P
age <

1>
jjc@

icsl.ucla.edu

C
om

m
ents
Let's start by exam

ining the code step by step. T
he first line is a com

m
ent defined by the

tw
o slashes. In any program

, anything that follow
s tw

o slashes is ignored by
V

erilog.

M
odulesM

odules are w
hat define com

ponents in
V

erilog. T
hey are rem

arkably sim
ilar to functions

or procedures in other languages because given input, they can produce specific output. T
he

m
odule show

n, top, has no input and output, m
aking it self contained. It w

ill be the first m
odule

evaluated w
hen Verilog is run because of this.

A
 m

ore general m
odule follow

s the follow
ing form

:

m
o

d
u

le

m
o

d
u

le
n

a
m

e
(in

1
,

in

2
,

 ...,
in

o
u

t1
,

 ...,
o

u
t1

,
 ...)

in
p

u
t

in
1

,

in
2

,
 ...;

in
o

u
t

in

o
u

t1
,

 ...;
o

u
tp

u
t

o
u

t1
,

 ...;

<
m
o
d
u
l
e

b
o
d
y

o
r

t
e
x
t
>

e
n

d
m

o
d

u
le

T
he m

odulenam
e can be replaced w

ith any nam
e of the m

odule. A
lthough the inputs,

input/outputs, and outputs can be placed in any order w
ithin the m

odule's param
eters, it is good

to be consistent w
here you place them

 w
ithin the list. T

he keyw
ords,
input, inout, and output a

re
used to define the direction that data can flow

 through the node nam
ed by the param

eter. T
hese

keyw
ords are used just like the

w
ire and reg keyw

ords w
hich w

e'll discuss in m
ore depth later.

T
he m

odule body or text is a list of expressions that define the system
. M

odules are alw
ays

term
inated by the keyw

ord,
endm

odule.

D
efining W

ires and R
egisters

In this exam
ple, single bit w

ires and registers are used, although
V

erilog allow
s m

ulti-bit
sized w

ires (buses) and registers to be defined. W
ires, registers, inputs, input/outputs, and

outputs are all defined in the sam
e fashion. T

he only difference being the keyw
ord used.

in
p

u
t a

, b
;

o
u

tp
u

t [2
:0

] o
u

t;
w

ire

w
ire

1
,

w

ire
2

,
 a

, b
;

w
ire

 [7
:0

] b
yte

;
re

g
 [3

1
:0

]
w

o
rd

re
g

;

A
 nam

e by itself represents a single bit, or w
ire node. T

o produce buses, or larger arrays
of bits, the bracketed expression is placed before the nam

e.
[2:0] defines 3 bits, 2 through 0.

[7:0] defines 8 bits, 7 through 0.
[31:0] defines 32 bits, 31 through 0.

R
egisters and w

ires cannot be used everyw
here. In the sim

ple program
,

out is a w
ire, and

a and b are registers. T
his is required because

out appears at the left hand side of an
assign

expression, and
a and b appear at the left hand side of '=

' signs in the
initial expression. W

e'll
cover this in m

ore detail later.

B
y Joshua Cantrell

P
age <

2>
jjc@

icsl.ucla.edu

T
he A

ssign (D
eclarative) E

xpression
T

he assign expression can have registers and w
ires as inputs into the expression on the

right hand side of the '=
' sign, but only w

ires on the left hand side of the '=
' sign. T

his is due to the
fact that the value at left is dependent on the values on the right at all tim

es. T
his also m

eans that
a particular w

ire can only be found once on the left side of the '=
' once w

ith an
assign. H

aving a
w

ire assigned m
ore than one valu

e w
ould be contradictory in nature.

a
ssig

n
 o

u
t =

 a
 &

 b
;

a
ssig

n

C
in

[7
:0

]
 =

{C

o
u

t[6
:0

],

~
a

lu
A

d
d

};
a

ssig
n

C

o
u

t
 =

G

e
n | (P

ro
p

 &

C
in

);

In assign expressions, logic, and in som
e cases, arithm

etic, can be used. T
he follow

ing are valid
bitw

ise lo
g

ic o
p

e
ra

to
rs, |, &

, ̂
, and ~, w

hich are or, and, xor, and not respectively.
N

o
te

 th
e

 u
se

 o
f Cin[7:0]. T

his refers to assigning a value to the bits 7 through 0 of
C

in.
If w

e only desired to set a sm
aller num

ber bits of
C

in, w
e could have w

rote
C

in[5:3] w
hich

w
ould define bits 5 through 3 of

C
in. T

he expression
{C

out[6:0], ~aluA
dd} defined by the braces

is called a Concatenation. T
his allow

s m
ultiple bits to be put together and treated like a string of

bits. In the exam
ple above,

C
out[6:0] is concatenated w

ith the not of
aluA

dd, so
 C

in[7:1] g
e

ts
C

out[6:0] and C
in[0] g

e
ts ~aluA

dd.

T
he Initial and A

lw
ays (P

rocedural) E
xpressions

Initial and alw
ays are extrem

ely sim
ilar to each other. T

he m
ain difference is that

initial
defines events that only happen at the beginning of tim

e, and
alw

ays defines events that happen all
the tim

e a given condition occurs (if no condition is given, it defines a continuously looping list of
events). In these expressions, only registers can be defined on the left hand side of the '=

' sign.
T

his happens because everything w
ithin an

alw
ays o

r initial block takes the inputs as they are and
sets the value. If the inputs change, it takes an '=

' sign in an
alw

ays o
r initial b

lo
ck to

 re
se

t th
e

register's value, or the value w
ill not change. C

om
pare this to the

assign expression w
hose output

w
ill alw

ays change if one of its inputs change.
T

hese are called procedural because they can be set to only happen at certain tim
es or

during particular conditions, w
hereas the

assign defines som
ething that happens continuously.

in
itia

l
 b

e
g

in
 to

g
g

le
 =

 1
'b

1
;

 e
n

d

a
lw

a
ys @

(a
 o

r b
)

 b
e

g
in

 o
u

t =
 a

 &
 b

;
 to

g
g

le
 =

~

to
g

g
le

;
 e

n
d

In the above exam
ple, the

initial block initializes the toggle register at binary 1. 1 T
he

alw
ays block is only called w

hen either
a o

r b changes values. If the
expression"toggle =

B
y Joshua Cantrell

P
age <

3>
jjc@

icsl.ucla.edu

1
I'll cover the num

ber form
at later.

~toggle;" had not be added to the alw
ays block, it w

ould essentially act like "
assign out =

 a &
 b".

H
ow

ever, now
 the value of

toggle flips back and forth w
henever

a o
r b change their values.

A
lw

ays expressions can also be w
ritten w

ithout any conditions as show
n below

.
2 In this

case they need delays or it w
ill be called all the tim

e, even after it finishes being called (causing an
infinite loop).

// 5
0

%
 d

u
ty cycle

 clo
ck, 2

0
 tim

e
 u

n
it p

e
rio

d
a

lw
a

ys
 b

e
g

in
 clo

ck =
 0

;
 #

1
0

; // D
e

la
y co

n
tro

l =
 1

0
 u

n
its

 clo
ck =

 1
;

 #
1

0
;

 e
n

d

N
um

bers in V
erilog

N
um

bers in Verilog follow
 the form

 show
n in

figure 1. T
he first num

ber tells Verilog how
 m

any bits
the num

ber takes up. T
he character represents the base

of the value representation,
h for hexadecim

al, b for
binary, d for decim

al, and o for octal.

1
6

'h
1

A
2

3
1

4
'b

0
1

1
0

1
0

0
0

1
0

0
0

1
1

2
0

'd
6

6
9

1

A
ll of the V

erilog values show
n above have the sam

e
decim

al value, but each contains a different num
ber of bits and is represented in a different base.

W
ire &

 P
rocedural D

elays in V
erilog

T
he results of an assign can be delayed from

 output by a given num
ber of tim

e units.
A

lthough your logic should not be dependent on these delays, it m
ay com

e in handy if you have
feedback loops w

hich w
ould go unstable w

ithout som
e type of delay. T

he delay tim
e appears

after the '#' m
ark, and before the equality statem

ent.

a
ssig

n
 #

3
 o

u
t =

 a
 &

 b
;

T
his statem

ent w
ould cause the value of

out to output 3 units of tim
e late.

W
ithin initial o

r alw
ays, the delay can be used to separate com

m
ands by a specific am

ount
of tim

e. E
ach delay is evaluated in sequence and can be used to separates groups of assignm

ents
as show

n in the sim
ple
V

erilog code, and the 50%
 duty cycle clock show

n above. If the delay is
on a line by itself, be sure to place a sem

icolon at the end of the line, or it w
ill be assum

ed that the
next line is being delayed by the value. (If there is no next line, an error w

ill occur.)

B
y Joshua Cantrell

P
age <

4>
jjc@

icsl.ucla.edu

2
T

his is a m
odified exam

ple taken from
 section 2.6.1 of

V
erilog A

ccording to T
om

.

#
'D

va
lu

e

num
ber of bits in value

base of value representation
value of num

ber

F
igure 1:

V
erilog N

um
ber Form

at

M
onitoring V

alues
W

hile testing V
erilog code, you w

ill need to m
ake sure values change as you w

ould
expect. T

his can be done using the
$m

onitor com
m

and in Verilog. T
his sets up a statem

ent
w

hich prints out text every tim
e a value changes, causing the previous output text to becom

e
invalid. T

he first param
eter in

$m
onitor is a string w

ith text and sym
bols, like

%
h, %

b, and %
t,

w
hich refer to the follow

ing param
eters, the m

onitored values.

$
m

o
n

ito
r("a

=
%

b
,

b

=
%

b
,

o
u

t=
%

b
,

tim

e
=

%
t\n

",
 a

, b
, o

u
t,

$
tim

e
);

T
he $tim

e variable contains the num
ber of tim

e units that have passed in the sim
ulation.
%

h
displays a hexadecim

al num
ber,
%

b displays a binary num
ber, and

%
t is specially designed to

display a tim
e value.

T
he D

um
p F

ile
T

o
 u

se
 th

e
 sim

ulatior S
ignalS

can (o
r th

e
 p

a
st Sim

W
aves), a dum

p file m
ust be generated.

T
his is done by using the three com

m
ands,

$dum
pfile, $dum

pvars, and $dum
pflush. $dum

pfile is
used to indicate in w

hat file to put the dum
p inform

ation.

$
d

u
m

p
file

("
sim

p
le

.d
u

m
p

");

$dum
pvars is used to indicate w

hat to dum
p. In extrem

ely large sim
ulations, dum

p files m
ay

becom
e huge in extent. In these cases only special variables m

ay w
ant to be included in the dum

p
file. T

he first num
ber represents how

 m
any
m

odules to
 d

escend into. T
he follow

ing are nam
es of

m
odules or values to be included in the dum

p file. In the sim
ple case, the num

ber w
as m

ade
arbitrarily large and the all inclusive

top m
odule w

as told to be dum
ped. T

his should dum
p

everything into the dum
p file.

$
d

u
m

p
va

rs(5
,

 to
p

);

$dum
pflush is used w

henever new
 inform

ation needs to be forced into the dum
p file. B

ecause
V

erilog quits after running the sim
ple code, it probably is not necessary, but for the sake of

exam
ple it has been added to the code.

R
unning V

erilog C
ode

A
t the shell prom

pt, the
V

erilog code can be run by typing:

ve
rilo

g

file
1

.v

file
2

.v
 ...

file
N

.v

O
r, if the files, file1.v th

ro
u

g
h

 fileN
.v, are listed in a text file, each residing on a separate line, the

V
erilog code can be run by:

ve
rilo

g
 -f

file
list

T
he output of the sim

ple code should look sim
ilar to:

C
o

m
p

ilin
g

 so
u

rce
 file

"

sim
p

le
.v"

B
y Joshua Cantrell

P
age <

5>
jjc@

icsl.ucla.edu

H
ig

h
e

st le
ve

l m
o

d
u

le
s:

to
p

a
=

0
, b

=
0

,
o

u
t=

0
,

tim

e
=

 0

a
=

0
, b

=
1

,
o

u
t=

0
,

tim

e
=

 1
0

a
=

1
, b

=
1

,
o

u
t=

1
,

tim

e
=

 2
0

a
=

1
, b

=
0

,
o

u
t=

0
,

tim

e
=

 3
0

0
 sim

u
la

tio
n

 e
ve

n
ts (u

se

+
p

ro
file

 o
r

+
listco

u
n

ts
 o

p
tio

n
 to

 co
u

n
t)

C
P

U
 tim

e
: 0

.1

se
cs

 to
 co

m
p

ile
 +

 0
.0

se

cs
 to

 lin
k +

 0
.1

se

cs
 in

sim
u

la
tio

n
E

n
d

 o
f

V
E

R
IL

O
G

-X
L

 2
.5

O

ct
 2

7
, 2

0
0

0

1
0

:4
3

:2
8

U
sing SignalScan to V

iew
 the D

um
p F

ile
T

o
 u

se
 SignalS

can, re
a

d
 th

e
 Using SignalScan

W
ith V

erilog docum
ent.

E
xam

ple w
ith M

odules
M

ore com
plex designs w

ill have m
ultiple

m
odules. E

ach m
odule acts like its ow

n com
ponent,

or black box, w
ith particular inputs and outputs. M

odules can be just like the
top m

odule show
n

above. A
s an exam

ple of a device w
ith m

ultiple m
odules, w

e w
ill design an adder. W

e w
ill have

tw
o m

odules, an ALU
 and a register.

// L
istin

g
 2

: A
d

d
e

r
V

e
rilo

g
 C

o
d

e
.

//
A

L
U

 m
o

d
u

le
m

o
d

u
le

a

d
d

e
r(a

,
 b

, su
m

);
 in

p
u

t a
, b

;
 o

u
tp

u
t [1

:0
] su

m
;

 a
ssig

n
 su

m
 =

 {a
 &

 b
, a

 ^ b
};

e
n

d
m

o
d

u
le

// R
e

g
iste

r m
o

d
u

le
m

o
d

u
le

re

g
iste

r(clk,
 in

, o
u

t);
 in

p
u

t
clk;

 in
p

u
t [1

:0
] in

;
 o

u
tp

u
t [1

:0
] o

u
t;

re

g

o
u

t_
re

g
;

 a
ssig

n
 o

u
t =

o

u
t_

re
g

;

 a
lw

a
ys

@
(p

o
se

d
g

e

clk)
 b

e
g

in

o
u

t_
re

g
 =

 in
;

 e
n

d

B
y Joshua Cantrell

P
age <

6>
jjc@

icsl.ucla.edu

REGISTER

ALU

2
2

ab

o
u

t

F
igure 2:

A
dder w

/ 2 m
odules

e
n

d
m

o
d

u
le

// T

o
p

 m
o

d
u

le
m

o
d

u
le

 to
p

();
 w

ire
 [1

:0
] o

u
t;

 w
ire

 [1
:0

]
a

d
d

_
o

u
t;

re

g
 a

, b
,

clk;

 a
d

d
e

r
a

d
d

e
r1

(a
,

 b
,

a
d

d
_

o
u

t);
 re

g
iste

r
re

g
1

(clk,

a
d

d
_

o
u

t,
 o

u
t);

 a
lw

a
ys

 b
e

g
in

clk

 =
 1

'b
0

;
 #

3
;

clk

 =
 1

'b
1

;
 #

3
;

 e
n

d

 in
itia

l
 b

e
g

in
 a

 =
 1

'b
0

;
 b

 =
 1

'b
0

;
 #

1
0

;
 a

 =
 1

'b
0

;
 b

 =
 1

'b
0

;
 #

1
0

;
 a

 =
 1

'b
0

;
 b

 =
 1

'b
1

;
 #

1
0

;
 a

 =
 1

'b
1

;
 b

 =
 1

'b
1

;
 #

1
0

;
 a

 =
 1

'b
1

;
 b

 =
 1

'b
0

;
 #

1
0

;

$
d

u
m

p
flu

sh
;

$

fin
ish

;
 e

n
d

 in
itia

l
 b

e
g

in

$
m

o
n

ito
r("a

=
%

b
,

b

=
%

b
,

o
u

t=
%

b
,

tim

e
=

%
t\n

",
 a

, b
, o

u
t,

$
tim

e
);

$

d
u

m
p

file
("to

p
.d

u
m

p
");

$

d
u

m
p

va
rs(5

,
 to

p
);

 e
n

d
e

n
d

m
o

d
u

le

B
y Joshua Cantrell

P
age <

7>
jjc@

icsl.ucla.edu

T
he A

L
U

 M
odule

T
he A

LU
 m

odule is essentially an assign statem
ent w

hich
preform

s a sim
ple carry adder

arithm
etic. N

otice the use of
[1:0] to define a tw

o bit output, and the braces to define a
concatenation.

//
A

L
U

 m
o

d
u

le
m

o
d

u
le

a

d
d

e
r(a

,
 b

, su
m

);
 in

p
u

t a
, b

;
 o

u
tp

u
t [1

:0
] su

m
;

 a
ssig

n
 su

m
 =

 {a
 &

 b
, a

 ^ b
};

e
n

d
m

o
d

u
le

T
he R

egister M
odule

T
his defines a 2-bit register. T

he input and output are considered w
ires, so an assignm

ent
is m

ade for the out w
ire

 to
 b

e
 e

q
u

a
l to

 th
e

 o
u

tp
u

t o
f th

e
 re

g
iste

r,
out_reg. T

his particular alw
ays

block is only called w
hen the value of

clk transitions from
 low

 to high, the positive edge of
clk.

// R
e

g
iste

r m
o

d
u

le
m

o
d

u
le

re

g
iste

r(clk,
 in

, o
u

t);
 in

p
u

t
clk;

 in
p

u
t [1

:0
] in

;
 o

u
tp

u
t [1

:0
] o

u
t;

re

g

o
u

t_
re

g
;

 a
ssig

n
 o

u
t =

o

u
t_

re
g

;

 a
lw

a
ys

@
(p

o
se

d
g

e

clk)
 b

e
g

in

o
u

t_
re

g
 =

 in
;

 e
n

d
e

n
d

m
o

d
u

le

T
he T

op M
odule : D

efining M
odules

T
he definitions of the ALU

 and register m
odules are incom

plete because they don't have
any specific inputs and outputs. T

h
ese definitions are prim

arily blue prints for m
aking

com
ponents w

hich look and act as th
e blue print specifies. In the top m

odule, the definitions are
finished by giving them

 a com
ponent nam

e and attaching w
ires or registers to them

.

a
d

d
e

r
a

d
d

e
r1

(a
,

 b
,

a
d

d
_

o
u

t);
re

g
iste

r
re

g
1

(clk,

a
d

d
_

o
u

t,
 o

u
t);

T
he first nam

e is the blue print nam
e. T

he second nam
e is the realized com

ponent nam
e, and the

values w
ithin the parenthesis are the connected w

ires or registers.

b
l
u
e
p
r
i
n
t

c
o
m
p
o
n
e
n
t

(
w
i
r
e
1

,

w
i
r
e
2

,
 ...,

w
i
r
e
N

);

B
y Joshua Cantrell

P
age <

8>
jjc@

icsl.ucla.edu

T
he T

op M
odule : A

lw
ays B

lock
T

he alw
ays block in the top m

odule is used to generate a clock to test the functionality of
the register. E

ver 3 tim
e units, it transitions to a new

 value. B
ecause it doesn't have a condition

w
hen the alw

ays is to begin, it sim
ple m

akes an infinite loop.

a
lw

a
ys

 b
e

g
in

clk

 =
 1

'b
0

;
 #

3
;

clk

 =
 1

'b
1

;
 #

3
;

 e
n

d

T
he T

op M
odule : $finish

A
t the end of the initial block w

ith the test inputs,
$finish is added to tell Verilog th

e
sim

ulation is com
pleted.

V
erilog w

ould otherw
ise continue sim

ulating because the clock
continues to transition indefinitely. In order to create a

V
erilog prom

pt for testing, $stop, can be
used instead.

T
he A

dder O
utput

T
he output of the adder should look as show

n below
. N

otice how
 the register causes the

output to only transition at the positive edge of
clk.

C
o

m
p

ilin
g

 so
u

rce
 file

"a

d
d

e
r.v"

H
ig

h
e

st le
ve

l m
o

d
u

le
s:

to
p

a
=

0
, b

=
0

,
o

u
t=

xx,

tim
e

=
 0

a
=

0
, b

=
0

,
o

u
t=

0
0

,

tim
e

=
 3

a
=

0
, b

=
1

,
o

u
t=

0
0

,

tim
e

=
 2

0

a
=

0
, b

=
1

,
o

u
t=

0
1

,

tim
e

=
 2

1

a
=

1
, b

=
1

,
o

u
t=

0
1

,

tim
e

=
 3

0

a
=

1
, b

=
1

,
o

u
t=

0
0

,

tim
e

=
 3

3

a
=

1
, b

=
0

,
o

u
t=

0
0

,

tim
e

=
 4

0

a
=

1
, b

=
0

,
o

u
t=

0
1

,

tim
e

=
 4

5

L
6

3

"a
d

d
e

r.v":

$
fin

ish
 a

t sim
u

la
tio

n
 tim

e
 5

0
0

 sim
u

la
tio

n
 e

ve
n

ts (u
se

+

p
ro

file
 o

r
+

listco
u

n
ts

 o
p

tio
n

 to
 co

u
n

t)
C

P
U

 tim
e

: 0
.1

se

cs
 to

 co
m

p
ile

 +
 0

.0

se
cs

 to
 lin

k +
 0

.1

se
cs

 in
sim

u
la

tio
n

E
n

d
 o

f
V

E
R

IL
O

G
-X

L
 2

.5

O
ct

 2
7

, 2
0

0
0

 1
1

:2
9

:1
0

B
y Joshua Cantrell

P
age <

9>
jjc@

icsl.ucla.edu

