
Blocking and Non-blocking Assignments in Explicit and
Implicit Style Verilog Synthesis

Mark G. Arnold
Computer Science Dept.

University of Wyoming

Laramie, Wyoming 82071

marnold@uwyo.edu

Jerry J. Cupal
Electrical Engineering Dept.

University of Wyoming

Laramie, Wyoming 82071

jcupal@uwyo.edu

James D. Shuler
Computer Science Dept.

SUNY College at Brockport

Brockport, New York 14420

jshuler@cs.brockport.edu

Abstract
We show transformations that convert blocking assign-
ments into non-blocking assignments. Such transforma-
tions are useful because the parallel-processing nature of
hardware is more easily conceptualized and mapped to
technology with non-blocking assignment. To validate
our theory, we synthesized using Synopsys FPGA Ex-
press, which supports both blocking and non-blocking as-
signments.

Some of these transformations apply to both explicit-
(IEEE P1364.1 proposed RTL synthesis standard) and
implicit- (multiple clocking events in an always block)
style Verilog. The more complicated transformations ap-
ply only to implicit-style code. We also notice there is a
one-clock-cycle mismatch between implicit-style synthe-
sis and simulation, which is, in general, solvable only
for non-blocking assignment. We avoid this mismatch
by modifying our testbench. We feel the complexity
of transforming blocking to non-blocking assignment as
well as testbench mismatch justify our decision to imple-
ment only non-blocking assignment in our Verilog Im-
plicit to One-hot (VITO) preprocessor.

Explicit versus Implicit
There are two styles of behavioral code that can be syn-
thesized: implicit and explicit. Explicit-style code is
more restrictive than implicit-style code in two main re-
spects: explicit-style code prohibits the use of while or
forever loops, and explicit-style code allows only one
clocking-event expression per always block (which must
occur at the top of the block). Explicit-style code is ac-
cepted by all synthesis vendors and is the basis of the
proposed IEEE P1364.1 standard [5] for the so-called
“Register Transfer Level Subset” of Verilog.

Implicit-style code [1, 6] relaxes these restrictions
so that multiple clocking events as well as while and
forever loops are allowed, provided that the clocking
events are identical (shown as @(posedge sysclk) in
the following examples) and each loop contains at least

one clocking event. Several vendors, including Synop-
sys and Cadence, accept implicit-style code for synthe-
sis. Also, a freely available preprocessor known as VITO
[3] can translate a very usable (and growing1) subset of
implicit-style Verilog into explicit-style Verilog compli-
ant with IEEE P1364.1. Thus, synthesis design flows
for implicit-style Verilog are available to all Verilog de-
signers who wish to use this style.

Blocking versus Non-blocking

Verilog provides two kinds of behavioral assignment: the
blocking assignment (=), which is similar to software as-
signment statements found in most conventional pro-
gramming languages, and the non-blocking assignment
(<=), which is the more natural assignment statement
to describe many hardware systems, especially for syn-
thesis. Cummings [4] expresses the view of many ex-
perienced Verilog designers that blocking assignments
should be used only in a few situations, such as for mod-
eling combinational logic, for defining functions, or for
implementing testbench algorithms.

All IEEE P1364.1 compliant synthesis tools are re-
quired to support both blocking and non-blocking as-
signments in explicit-style code, with the restriction that
each variable and each block may use only one or the
other kind of assignment. Synopsys [7] supports both
blocking and non-blocking assignments in implicit-style
code with the same restrictions.

Parallel Processing

When we implemented VITO three years ago, we re-
stricted implicit-style assignments to only non-blocking
assignments for ease of implementation of our preproces-
sor. Although we have a philosophical bias against the
blocking assignment, we would have implemented the
blocking assignment if we could have devised an easy

1VITO 1.3 (www.verilog.vito.com) now supports
disable, case, wait, fork and memories.

way to to do so. As this paper will show, there is
no easy way. VITO is essentially a context-free pre-
processor that translates each assignment statement of
an implicit-style block independently into a portion of a
one-hot state machine. The one-hot technique we used
with VITO was independently discovered by Niklaus
Wirth and coworkers at the Swiss Federal Institute of
Technology [8], and so we feel quite confident that the
VITO approach is sound. (Wirth is the well-known cre-
ator of the Pascal, Modula-2 and Oberon software lan-
guages.)

The state machine created by VITO controls a mux
for each left-hand variable in the original implicit-style
code. The inputs to the mux are the right-hand expres-
sions assigned to the corresponding variable. The value
of each variable is stored in a synchronous D-type reg-
ister. This translation can be done without much con-
text (and without a symbol table) because of the order-
independent semantics of the non-blocking assignment
statement. (The meaning of a<=b is the same regard-
less of earlier or later statements.) Also, by adhering
to some simple restrictions [2], one can guarantee that
implicit-style simulation matches post-VITO synthesis
(using the criteria given in IEEE P1364.1 section 3.1.2).

A recent thread in comp.lang.verilog expressed the
view that non-blocking assignment is more primitive
and backwards than blocking assignment and that non-
blocking assignment is for designers who are stuck with
an antiquated view of thinking in terms of flip-flops
rather than in terms of the problem being solved. A
similar view was expressed during questions at a pre-
sentation of an earlier paper about VITO. We disagree
with such a narrow view. We feel that non-blocking
assignment is the proper notation for modeling hard-
ware, not just because it has a straightforward mapping
to technology, but rather we feel the mapping is more
straightforward because non-blocking assignment cap-
tures the essential aspect of hardware: parallel process-
ing. If there is no need for parallel processing in a prob-
lem, then there is usually no need to be designing new
hardware. (Software running on an off-the-shelf micro-
processor would suffice.)

To illustrate our point, consider the work Wirth has
done with hardware compilation. To prototype hard-
ware compilation, Wirth incorporated many of the con-
cepts of implicit-style Verilog (with different syntax)
into a behavioral HDL based on his Oberon language.
This can then be translated into hardware using a one-
hot technique similar to VITO. In Wirth’s language,
a semicolon acts like a clocking event in Verilog and a
comma acts like a semicolon in Verilog. All of the assign-
ments in Wirth’s language are non-blocking. Wirth’s

conclusion [8] is:

The strength of hardware lies in the potential for
subcircuits to operate concurrently. Although this
is also a topic in software design, we must be aware
that genuine concurrency is only possible if we have
concurrently operating circuits to support the soft-
ware concept. Thus much of the work on paral-
lel computing in software actually ends up imple-
menting only quasiconcurrency–pretended concur-
rent execution–conveniently hiding the underlying
sequentiality. This leads me to contend that any
scheme of direct hardware compilation ... must
include the facility to specify concurrent, parallel
statements. Such a hardware programming lan-
guage may indeed be the best way to let program-
mers specify parallel statements, which we call fine-
grained parallelism.

Clocking Events

In both explicit- and implicit-style Verilog, assignment
statements are preceded and followed by a clocking
event. In the explicit style of IEEE P1364.1, those
clocking events are the same @(posedge sysclk) at the
top of the always. In the implicit style, those clocking
events may relate to distinct states. Therefore, in ei-
ther implicit- or explicit-style code, changes occur only
at clock edges, forming what is commonly referred to as
a Moore machine.

Assignment Transformations

Every non-blocking assignment can be translated into
two blocking assignments: one that evaluates the right-
hand side and saves the result in a temporary variable,
and the other that later stores the temporary value into
the variable in question [1].

It is also true that every blocking assignment can be
translated into a series of non-blocking assignments, but
the transformation is context sensitive, and sometimes
quite counterintuitive. The purpose of this paper is to
illustrate some of these transformations, which apply
to both synthesis and simulation. The first examples
apply equally to both explicit- and implicit-style code.
The more intricate examples shown later apply only to
implicit-style code

Single Assignment

The first rule in translating from blocking to non-
blocking is that there is no difference between the two
when there is only one statement between clocking
events. For example, the explicit-style code with block-
ing assignment

always @(posedge sysclk)

a=b;

is identical to a similar non-blocking assignment

always @(posedge sysclk)

a<=b;

when considered in isolation (assuming the $strobe

task is used to observe a after the non-blocking assign-
ment has occurred). Interaction of several such always

may create other problems for blocking assignments [4].

Two Assignments

When there are two blocking assignment statements, the
translation to non-blocking will differ based on whether
there are dependencies. In the following subsections,
the blocking assignments on the left are equivalent to
the non-blocking assignments on the right given that a,
b, c, d and e are unique variables, and f(), g() and h()

are functions that involve only the argument shown and
possibly variables other than a, b, c, d and e.

When there are no dependencies between two block-
ing assignments, there is a one-to-one translation to cor-
responding non-blocking assignments:

a=f(b); a<=f(b);

c=g(d); c<=g(d);

On the other hand, should the evaluation of the right-
hand side of the second statement depend on the com-
pletion of the first blocking assignment, the right-hand
side of the second non-blocking assignment must be re-
written to reflect the composite computation (g(f(b)):

a=f(b); a<=f(b);

c=g(a); c<=g(f(b));

Sometimes, output dependencies of blocking assign-
ments create dead code, which should be eliminated in
the non-blocking equivalent:

a=f(b); a<=g(d);

a=g(d);

If both kinds of dependencies are present, the two block-
ing assignments describe a single composite computa-
tion that modifies a single variable during a single clock
cycle:

a=f(b); a<=g(f(b));

a=g(a);

Assignments and One Decision

Both explicit and implicit styles allow decisions (if and
case statements). The possible forms are too numerous
to show here, but a simple example using if illustrates
the kind of transformations needed. More complex case

and if statements can be re-written in terms of compo-
sition of simple if statements.

Again, when there are no dependencies, the transla-
tion is one-to-one:

a=f(b); a<=f(b);

if(h(e)) if(h(e))

c=g(d); c<=g(d);

Should the condition for the if depend on the first
blocking assignment, it will need to be re-written:

a=f(b); a<=f(b);

if(h(a)) if(h(f(b)))

c=g(d); c<=g(d);

as will the second assignment if it has a dependency on
the first assignment:

a=f(b); a<=f(b);

if(h(e)) if(h(e))

c=g(a); c<=g(f(b))

Both the condition and the second assignment might
have a dependency:

a=f(b); a<=f(b);

if(h(a)) if(h(f(b)))

c=g(a); c<=g(f(b))

The transformation becomes much more problematic
when the second assignment (which is conditional) has
a dependency on the first assignment (which is uncon-
ditional):

a=f(b); if(h(e))

if(h(e)) a<=g(d);

a=g(d); else

a<=f(b);

There is no longer a one-to-one mapping, because only
one non-blocking assignment actually happens per clock
cycle, and so the condition must be tested before one or
the other assignment occurs.

The code is further complicated when the condition
has a dependency on the first assignment:

a=f(b); if(h(f(b)))

if(h(a)) a<=g(d);

a=g(d); else

a<=f(b);

A similar scrambling of the original code occurs when
there are both input and output dependencies between
the first and second blocking assignments:

a=f(b); if(h(e))

if(h(e)) a<=g(f(b));

a=g(a); else

a<=f(b);

and when the condition and both blocking assignments
have dependencies:

a=f(b); if(h(f(b)))

if(h(a)) a<=g(f(b));

a=g(a); else

a<=f(b);

To be useful, explicit-style code often needs complex
nesting of such decisions. If the assignment in such code
is blocking, the resulting hardware will often have little
resemblance to the designer’s intent. Also, the substi-
tution of composite functions may create lengthy delay
paths and make the resulting circuit larger than is op-
timal.

while loops

IEEE P1364.1 synthesis tools must be capable of han-
dling both blocking and non-blocking assignments in
explicit-style code. Although the substitutions required
to obtain a realizable synchronous circuit are tedious,
they result from simple recursive applications of the
above rules until all the dependencies have been re-
solved. The IEEE P1364.1 requirement of a single clock-
ing event in an explicit-style block limits the nature of
dependencies to ones like those shown above. The lack
of while and forever loops in IEEE P1364.1 guaran-
tees that the dependencies that exist in explicit-style
code are only those of textually later statements upon
textually earlier statements.

In contrast, the dependencies that might exist in
implicit-style code can be quite overwhelming. Let us
consider an example of an innocent looking while loop
with a blocking assignment statement:

module block2(a,b,waiting,sysclk);

output [1:0] a;

input [1:0] b;

input waiting,sysclk;

reg [1:0] a;

wire [1:0] b;

always

begin

while(waiting)

@(posedge sysclk);

a=b;

while (a!=2) //test current output

begin

@(posedge sysclk);

a=gray(a);

end

@(posedge sysclk);

end

...

endmodule

In the above, gray() is a function that computes the
next value in a two-bit gray-code sequence (0, 1, 3, 2).
The purpose of the module is to delay until waiting is
0, and then go through the gray-code sequence, starting
at b and terminating at 2.

A thorough testbench that instantiates this needs to
conduct four tests–one for each possible value of b (2,
3, 1 and 0). These tests correspond to calling the func-
tion zero to three times, respectively. In a correctly
functioning system, the output will be the gray-code
subsequence for one to four clock cycles, respectively.

The correct translation of the above blocking assign-
ments into non-blocking assignments with a while loop
requires the introduction of an extra state and a decision
that were not present in the original blocking code:

always

begin

while(waiting)

@(posedge sysclk);

a<=b;

if (b!=2) //test input

begin

@(posedge sysclk); //extra state

a<=gray(a);

while(gray(a)!=2) //test next output

begin

@(posedge sysclk);

a<=gray(a);

end

end

@(posedge sysclk);

end

When the input is 2, the machine needs to avoid call-
ing the function at all, but since the non-blocking as-
signment will not have changed the output until later,
the if must test the input, rather than the output.

The extra state handles the case when the input is 3.
Since gray(3) is 2, the while loop is not entered in this
case. This extra state also makes the first call to the
function for the situation when the while loop is to be
entered. Unlike the blocking code, the first call had to
be unrolled from the while loop.

The transformed while loop is entered only if the
function is to be called at least twice (the input is some-
thing besides 2 or 3). The condition that stops the loop
needs to look ahead to the next gray value (rather than
the current output used in the blocking example) be-
cause the non-blocking assignment will not have taken
effect until after the decision has to be made.

Another Example

Consider a minor change in the blocking code (inter-
changing the clocking event and the function call):

always

begin

while(waiting)

@(posedge sysclk);

a=b;

while (a!=2)

begin

a=gray(a);

@(posedge sysclk);

end

@(posedge sysclk);

end

This makes the value of a be gray(b) in the first cycle.
For example, the machine outputs 1, 3, 2 when b==0.
This seemingly minor variation causes a major difference
in the equivalent non-blocking code:

always

begin

while(waiting)

@(posedge sysclk);

if (b!=2)

begin

a<=gray(b);

if (gray(b)!=2)

begin

@(posedge sysclk); //1st extra

a<=gray(a);

while(gray(a)!=2)

begin

@(posedge sysclk);

a<=gray(a);

end

end

@(posedge sysclk); //2nd extra

end

else

a<=b;

@(posedge sysclk);

end

There are now two extra states and an else. The
else is needed because two dependent blocking assign-
ments happen in the first clock cycle, except when the
input is 2. In that case, there is only one assignment (of
the input to the output). As discussed earlier, equiva-
lent non-blocking code requires an if else.

The first extra state is needed for the same reason as
in the last example. Thus, the decision whether to call
the function the first time is based on the input b, rather

than a as was the situation in the blocking code. The
second extra state, which is an empty state with just the
clocking event, is needed because the blocking code has
the clocking event at the bottom of the loop, but this
particular non-blocking code needs the clocking event at
the top of the loop. The extra state makes the cycle-by-
cycle activity the same in the blocking and non-blocking
code.

Bottom-Testing Loop
The reason the extra states are needed in the non-
blocking versions above is because the current version
of Verilog lacks a bottom-testing loop. For instance, the
last non-blocking example can be simplified by using our
proposed repeat <statement> while (<condition>)

construct [2]:

always

begin

while(waiting)

@(posedge sysclk); //state 00

if (b!=2)

begin

a<=gray(b);

repeat

begin

@(posedge sysclk); //state 01

if (a!=2)

a<=gray(a);

end

while(a!=2);

end

else

a<=b;

@(posedge sysclk); //state 10

end

The advantages of the bottom-testing loop here are
two-fold: it allows the transformed state machine to test
a==2 directly rather than gray(a)==2, and it has the
same number of states as the original blocking version.
The bottom-testing loop works here precisely because it
ignores a during the clock cycle when the loop is entered.

Synthesis
A synthesis tool is not constrained to generate a state
machine expressible in the behavioral constructs of the
current Verilog standard; thus the tool is free to opti-
mize to a bottom-testing-loop construct. For example,
the last blocking code (with a=gray(a) before the clock-
ing event) was synthesized using Synopsys FPGA Ex-
press, which supports blocking assignment in implicit-
style code. The result of this synthesis produces a state
machine equivalent to the bottom-testing code shown

above. The comments in that code show the state as-
signment chosen by FPGA Express.

It took us hours to decipher the netlist output
from FPGA Express for this tiny three-state ma-
chine and prove it was isomorphic to what our the-
ory predicts. Synopsys creates a present-state register
(multiple_wait_state, which we will refer to as s for
brevity) and combinational logic to compute the next
state ({N21,N22}) for the controller and the load sig-
nal (n102) for the clock-enabled register, a. When syn-
thesizing to a Xilinx FPGA, FPGA Express generates
modules that compute the following expressions:

C52 = (s==2’b01)

syn151 = ((s==2’b01)?(a[0]==0):(b[0]==0))

syn154 = syn151&

((s==2’b01)?(a[1]==1):(b[1]==1))

= ((s==2’b01)?(a==2):(b==2))

N21 = syn154&((s==2’b01)|~waiting)

= ((s==2’b01)?(a==2):((b==2)&~waiting))

N22 = ~syn154&((s==2’b01)|~waiting)

= ((s==2’b01)?(a!=2):((b!=2)&~waiting))

n102 = C52&syn154|~C52&~waiting

= ((s==2’b01)?(a!=2):~waiting)

Tabulating the truth table for this:

s waiting a==2 b==2 {N21,N22} n102

00 0 x 0 01 1

00 0 x 1 10 1

00 1 x x 00 0

01 x 0 x 01 1

01 x 1 x 10 0

10 0 x 0 01 1

10 0 x 1 10 1

10 1 x x 00 0

we discover that the state machine Synopsys synthesized
from the blocking code is identical to the non-blocking
version using repeat ... while.

Simulation/Synthesis Mismatch
Both blocking and non-blocking assignments suffer
from a semantic gap between synthesis and simu-
lation when the assignments do not have an intra-
assignment clocking event. In other words, the code
in this paper has used a<=b rather than a<= @(posedge

sysclk)b. In implicit-style code that uses only the non-
blocking assignment there is a solution to overcome this
mismatch[1]: define macros ‘ENS and ‘CLK differently
for simulation and synthesis. These are used as:

@(posedge sysclk)‘ENS;

a<=‘CLK gray(a);

For simulation, they substitute the appropriate time
control. For synthesis, they are simply empty macros.

pre-synthesis
implicit

code

post-synthesis
netlist

Testbench

D Q

compare

Figure 1: Testbench configuration.

Although using these macros with non-blocking assign-
ment only is our recommendation [2] for “safe” implicit-
style simulation and synthesis, we will not follow these
recommendations here because they are inapplicable to
blocking assignment.

Instead, we will modify the testbench. For blocking
assignment in implicit-style code, there is no way to
avoid such simulation mismatches. If we do not use the
macros, the non-blocking code creates identical simula-
tion mismatches. To compensate for this, we added an
extra clock cycle of delay (outside of the implicit-style
code) from the pre-synthesis simulation before compar-
ing it to post-simulation results, as shown in Figure 1.

IEEE P1364.1 is designed to avoid this semantic gap–
it arises only in implicit-style code. IEEE P1364.1 is
stateless–any state machines must be declared using ex-
plicit regs, which provide the necessary one-clock-cycle
delay so that simulation matches synthesis.

Conclusions

We have given some examples of the transformations
that convert blocking assignments into non-blocking as-
signments. Some of these transformations apply to both
explicit- and implicit-style Verilog, but others apply
only to implicit-style code. The goal of the transforma-
tions is to eliminate dependencies often found in block-
ing assignment so that we can use the parallel-processing
nature of the non-blocking assignment to achieve the
same cycle-by-cycle effect.

We synthesized using Synopsys FPGA Express, and
found that it had transformed the blocking assignments
into non-blocking assignments in precisely the way our
theory predicted. We overcame the one-clock-cycle mis-
match between implicit-style synthesis and simulation
by adapting our testbench. Including a bottom-testing-

loop construct in Verilog would help conceptualize the
fancy transformations a sophisticated tool like FPGA
Express performs.

In general, the simulation/synthesis mismatch is solv-
able by using macros only for non-blocking assignment.
We feel that non-blocking assignment is the natural
way to express the parallel-processing power of hard-
ware. Blocking assignment, while appropriate for soft-
ware and mathematical functions (combinational logic),
is clumsy and cumbersome for realistic hardware (se-
quential logic). The involved and counterintuitive trans-
formations shown here from blocking to non-blocking
assignment illustrate that many designers using block-
ing assignment may not understand how their synthe-
sized design actually works. Implicit style with non-
blocking assignment is the right level of abstraction. It
is not as tied to implementation details as explicit style,
but, as our examples have shown, non-blocking assign-
ment emphasizes what the hardware does in parallel,
unlike blocking assignment. (If one wishes to use block-
ing assignment, one might as well use a synthesis tool
that translates directly from C and that automatically
schedules the clocking events. A designer using block-
ing assignment in Verilog probably has no better idea
of the cycle-by-cycle activity of the synthesized netlist
than one using clockless C code.)

These results justify our decision to implement only
non-blocking assignment in our VITO preprocessor.
They also give us great appreciation for the skill that
went into designing tools, like FPGA Express, that sup-
port blocking assignment in implicit-style Verilog.

References

[1] M. G. Arnold, Verilog Digital Computer De-
sign: Algorithms to Hardware, Upper Saddle
River, NJ: PTR Prentice Hall, 1999, pp. 96-
109. Typos and example files are available at
strawberry.uwyo.edu/~verilog.

[2] M. G. Arnold, N. J. Sample and J. D. Shuler,
“Guidelines for Safe Simulation and Synthesis of
Implicit Style Verilog,” Proceedings of the Sev-
enth International Verilog HDL Conference, Santa
Clara, CA: Mar. 16–19, 1998.

[3] M. G. Arnold and J. D. Shuler, “A Synthesis Pre-
processor that Converts Implicit Style Verilog into
a One-hot Design,” Proceedings of the Sixth In-
ternational Verilog HDL Conference, Santa Clara,
CA: Mar. 31–Apr. 3 1997, pp. 38-45. Source code
for the latest version of VITO is available at
www.verilog.vito.com. Mirrors of this site are

available at: strawberry.uwyo.edu/~verilog and
www.cs.brockport.edu/~jshuler/vito.

[4] C. E. Cummings, “Verilog Nonblocking Assignment
Demystified,” Proceedings of the Seventh Interna-
tional Verilog HDL Conference, Santa Clara, CA:
Mar. 16–19, 1998, pp. 67–69.

[5] DRAFT Standard Register Transfer Level Subset
Based on the Verilog Hardware Description Lan-
guage, P1364.1, New York: IEEE, June 3, 1998.
Available at www.eda.org/vlog-synth.

[6] J. M. Lee, Verilog Quickstart, Norwell, MA:
Kluwer, 1997.

[7] HDL Compiler for Verilog Reference Manual, Ver-
sion 3.1a, Synopsys, Inc., March 1994, pp. 8–19 and
5–10.

[8] N. Wirth, “Hardware Compilation: Translating
Programs into Circuits,” Computer, IEEE Com-
puter Society, June, 1998, pp. 25–31.

