
LC3-uArch-MemMapIOstacksINT

documentation

A different OS might arrange OS and User spaces
differently. The current LC3 OS in PP does it this
way.

OS Trap routines defined in PP's OS. (You could add to these, if you wanted to rewrite the OS.)

TRAP <n> Assembly-psuedonymn Description
-------------- ---------- ---
TRAP x25 HALT jump to OS w/ message, loops in OS forever.
TRAP x20 GETC one char in, keyboard data ==> R0[7:0] (clears R0 first).
TRAP x21 OUT one char out, R0[7:0] ==> display, ignores big-end byte, R0[15:8].
TRAP x22 PUTS string out, Mem[R0++] ==> display until x0000. Ignore big-end bytes, 1 char per word.
TRAP x23 IN displays prompt, then one char in ala GETC.
TRAP x24 PUTSP same as PUTS, but packed (2 chars per word, little-end byte then big-end byte).

See PP, Append. A.4, Table A.2

I/O Device hardware communication layers

(0.) device's onboard controller

 communicates with

(1.) device's bus interface board (aka "device controller"),

 communicates with

(2.) I/O bus (PCI bus, for example).

 communicates with

(3.) CPU's memory/bus unit

Device controllers are "programmed" by sending control words to their
"device registers". Device status information is returned, and data is
sent/received to/from the device via the device data registers. Device
registers are accessed via memory LD/ST instructions using memory
addresses (memory-mapped I/O).

LC3 FSM
READ states:

33, 28, 24, 25, 29, 36, 40, 52*

LC3 FSM
WRITE states:
16, 41*, 48*

* Interrupt mechanism not implemented in
LC3simulate.exe

Currently executing program has priority level in PSR[10:8].
Priority encoder sends code of highest priority device
requesting service.

Could add another "chained"
priority encoder and 7 more
I/O devices.

The PP priority comparator (A>B) does not allow
IntPriority = 3'b000 to interrupt any running program. So,
no point in attaching anything to A_0. We could change
to (A>=B). In that case, we cannot disable interrupts by
setting PSR.Priority = 3'b111. We could handle that by
adding an EnableINT bit to the MCR, but then we would
need an instruction that can toggle that bit.

