Operating System Calls

Certain operations require specialized knowledge and protection:

- specific knowledge of I/O device registers and the sequence of operations needed to use them
- I/O resources shared among multiple users/programs; a mistake could affect lots of other users!

Not every programmer knows (or wants to know) this level of detail

Provide service routines or system calls

(part of operating system) to safely and conveniently perform low-level, <u>privileged</u> operations

Traps-1

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

System Call

- 1. User program invokes system call.
- 2. Operating system code performs operation.
- 3. Returns control to user program.
- In LC-3, this is done through the TRAP mechanism

OTHER MOTIVATIONS FOR TRAPS

Traps-2

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

LC-3 TRAP Mechanism

1. A set of service routines.

- part of operating system -- routines start at arbitrary addresses (convention is that system code is below x3000)
- up to 256 routines

2. Table of starting addresses.

- stored at x0000 through x00FF in memory
- · called System Control Block in some architectures
- 3. TRAP instruction.
 - used by program to transfer control to operating system
 - 8-bit trap vector names one of the 256 service routines
- 4. A linkage back to the user program.
 - want execution to resume immediately after the TRAP instruction

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display

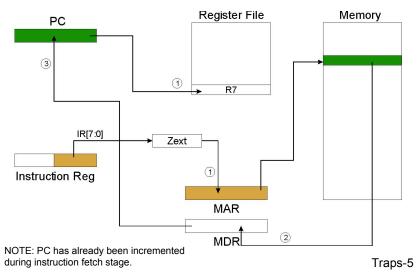
TRAP Instruction

	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
TRAP	1	1	1	1	0	0	0	0		t	raj	ove	ect	:8		

Trap vector

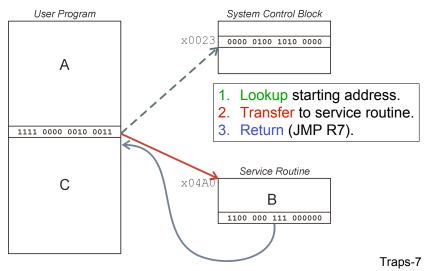
- · identifies which system call to invoke
- · 8-bit index into table of service routine addresses
 - > in LC-3, this table is stored in memory at 0x0000 0x00FF
 - >8-bit trap vector is zero-extended into 16-bit memory address

Where to go


· lookup starting address from table; place in PC

How to get back

• save address of next instruction (current PC) in R7


Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display

TRAP

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

TRAP Mechanism Operation

RET (JMP R7)

How do we transfer control back to instruction following the TRAP?

We saved old PC in R7.

- JMP R7 gets us back to the user program at the right spot.
- LC-3 assembly language lets us use RET (return) in place of "JMP R7".

Must make sure that service routine does not change R7, or we won't know where to return.

Traps-6

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display

Example: Using the TRAP Instruction

	.ORIG x3000	
	LD R2, TERM	; Load negative ASCII '7'
	LD R3, ASCII	; Load ASCII difference
AGAIN	TRAP x23	; input character
	ADD R1, R2, R0) ; Test for terminate
	BRz EXIT	; Exit if done
	ADD R0, R0, R3	<i>;</i> Change to lowercase
	TRAP x21	; Output to monitor
	BRnzp AGAIN	; again and again
TERM	.FILL xFFC	29 ; -'7'
ASCII	.FILL	x0020 ; lowercase bit
EXIT	TRAP x25	; halt
	.END	