
1

Pipelining

CIT 595
Spring 2007

9 - 2CIT 595

Laundry Example

• Ann, Brian, Cathy and Dave each
have one load of clothes to wash,
dry and fold

• Washer takes 30 mins

• Dryer takes 40 mins

• “Folder” takes 20 mins

9 - 3CIT 595

Sequential Laundry

• Entire workload takes 6 hours to complete

9 - 4CIT 595

Pipelined Laundry

• Pipelined Laundry takes only 3.5 hours
• Speedup = 6/3.5 = 1.7
• Pipelining did not reduce completion time for one task but it helps the

throughput of the entire workload in turn decreasing the completion time

2

9 - 5CIT 595

Instruction Level Pipelining
• Pipelining is also applied to Instruction Processing

• In instruction processing, each instruction goes through
F->D->EA->OP->EX->S cycle

• The instruction cycle is divided into stages
One stage could contain more than one phase of the instruction cycle or one
phase can be divided into two stages

• If an instruction is in a particular stage of the cycle, the rest of the stages
are idle

• We exploit this idleness to allow instructions to be executed in parallel

• From the Laundry Example, we know that throughput increase also
allows reduction in completion time, hence overall program execution time
can be lowered

• Such parallel execution is called instruction-level pipelining

9 - 6CIT 595

Instruction Level Pipelining: Big Picture

• Each stage of the Instruction Processing Cycle takes 1 clock cycle
1 clock cycle = x time units per stage

• For each stage, one phase of instruction is carried out, and the stages
are overlapped

S1. Fetch instruction S4. Fetch operands
S2. Decode opcode S5. Execute
S3. Evaluate Address S6. Store result

9 - 7CIT 595

Theoretical Speedup due to Pipelining

The theoretical speedup offered by a pipeline can be determined
as follows:

• Let k be total number of stages and tp be the time per stage
• Each instruction represents a task, T, in the pipeline and n be

the total number of tasks
• The first task (instruction) requires k × tp time to complete in a

k-stage pipeline.
• The remaining (n - 1) tasks emerge from the pipeline one per

cycle
• So the total time to complete the remaining tasks is (n - 1)tp
• Thus, to complete n tasks using a k-stage pipeline requires:

(k × tp) + (n - 1)tp = (k + n - 1)tp

9 - 8CIT 595

Theoretical Speedup due to Pipelining
If we take the time required to complete n tasks without a pipeline and
divide it by the time it takes to complete n tasks using a pipeline, we find:

If we take the limit as n approaches infinity, (k + n - 1) approaches n,
which results in a theoretical speedup of:

tn = k x tp

3

9 - 9CIT 595

LC3 Hardwired Control (modified)

CONTROL

Note: In this example only
instructions that can be performed
are the ones that update PC by 1

9 - 10CIT 595

How Pipelining actually Implemented??

• Since we are overlapping stages (with the exception of
Fetch stage), all the control information plus data (i.e.
information along the data path) must be remembered
per instruction and must be carried through each stage

• This is achieved by placing a n-bit register that can
hold the control/data information in between each stage

9 - 11CIT 595

LC3 Pipelined Implementation

With reference to diagram of Hardwired Control LC3 Implementation

Note:
• Since Evaluate Address and Execute both use ALU, we can make
this one stage

• The Operand Fetch is separated into Register Fetch and Memory
Access (one phase is split into two stages)

• Store consists of only register writes (not memory writes)

• Memory Write is part of Memory Access

• Thus we have a total of 6 stages

9 - 12CIT 595

LC3 Pipelined Implementation

S1/S2

Data
Control S4/S5S3/S4S2/S3 S5/S6

CONTROL

4

9 - 13CIT 595

Impact on Clock Cycle due to Pipelining

• Again for pipelining, the clock is sequencing the stages
(instructions move in lock step fashion)

• For pipelining to work correctly, we want to make sure
that all work done in one stage gets done on time before
it moves to next stage

• Hence, the clock cycle time should be as long as time it
takes through the longest pipe stage (this also includes
the time for capturing data into registers in between
stages)

Clock cycle time = max(t1,t2,t3,t4,t5,t6)

9 - 14CIT 595

LC3 Pipelined Implementation

S1/S2

Data
Control S4/S5S3/S4S2/S3 S5/S6

CONTROL

9 - 15CIT 595

Impact on Clock cycle time due to Pipelining
• Recall

• If we lower the time per cycle, this will lower the
program execution time and hence improve performance

• This implies that we if we shorten the time per pipeline
stages, we will lower clock cycle time

This can be achieved by adding more pipe stages of
shorter duration

time
program cycle

cycles

instruction
instructionstime

program= x x

Instruction CountCPIClock Cycle
time

CPU Time =

9 - 16CIT 595

5 stage

10 stage – clock cycle
time reduced by one half

20 stage – clock cycle
time reduced by one
fourth

Impact on Clock cycle time due to Pipelining

5

9 - 17CIT 595

Cycles Per Instruction (CPI) with Pipelining

• In pipelining, one instruction is in each stage

• Since one instruction will be fetched (or finish) each
cycle, the average CPI will equal 1 (obviously we are
ignoring the very first instruction – cold start)

• However, CPI = 1 is barely achieved

9 - 18CIT 595

Why CPI is not always 1?

We assume that the pipeline can be kept filled at all
times

• However, this is not always the case

The situations that cause pipeline not to filled at all
times arises due to what is known as Pipeline
Hazards

9 - 19CIT 595

Pipeline Hazards

There are three kinds of pipeline hazards:

1. Structural Hazard

2. Data Hazard

3. Control Hazard

9 - 20CIT 595

Structural Hazard

• Occurs when hardware cannot support a combination of
instructions that we want to execute in parallel

In Laundry example: the machine has combined washer or
dryer

• In instruction pipelining, it usually occurs when one
hardware is shared amongst two stages that work in
parallel

Example: Memory or Register File

• Usually overcome by duplicating hardware
Memory is separated into instruction and data memory
Or memory/register is multi-ported i.e. memory that
provides more than one access path to its contents

6

9 - 21CIT 595

LC3 Pipelined Implementation

S1/S2

Data
Control S4/S5S3/S4S2/S3 S5/S6

CONTROL

9 - 22CIT 595

Data Hazard

• Occurs when an instruction depends on the results of
a instruction still in the pipeline

• Example 1:
i1: ADD R1, R2, R3
i2: AND R5, R1, R4

• Example 2:
i1: ADD R1, R2, R3
i2: ST R1, A

• Example 3:
i1: LD R1, A
i2: ADD R2, R1, R2

9 - 23CIT 595

Data Hazard: Example 1

i1: ADD R1, R2, R3
i2: AND R5, R1, R4

S5
S6

S4
S5

S3
S4

S6S2S1
S3S2S1

0 1 2 3 4 5 6 7
i1
i2

i1 completed i.e.
value is written to R1

i2 fetching R1,
gets stale value

S1: Instruction Fetch

S2: Decode

S3: Register Fetch

S4: Execute/EA

S5: Memory Access (LD/ST)

S6: Write Back (register write)

cycle

9 - 24CIT 595

Data Hazard Example 1

S1/S2

Data
Control S4/S5S3/S4S2/S3 S5/S6

CONTROL

i2: R1 value fetch
(old received)

i1: R1 not written back
until S5

7

9 - 25CIT 595

Solution to Example 1

• Naive approach, introduce delay in the pipeline till
instruction i1 finishes
• Also stop any new instructions from being fetched
• Also known as Pipeline Stall or Bubble

S4 S5S3…
S6

..
S5

..
S4

S6S2S1
S3S2S1

0 1 2 3 4 5 6 7 8
i1
i2

cycle

S1: Instruction Fetch

S2: Decode

S3: Register Fetch

S4: Execute/Evaluate Addr

S5: Memory Access (LD/ST)

S6: Write Back (register write) 9 - 26CIT 595

Inserting delay in the Pipeline?

• As instructions are fetched and decoded, control
logic/special hardware determines whether a hazard
could/will occur

• If this is true, then the control logic
• Generates control such that next instruction will not be fetched and
• Suspends the instruction that will cause the hazard

Suspension is nothing but disabling all the stages till a few cycles
such that nothing occurs in them (known as inserting NOP i.e.
No-operation)

• This provides the instruction before the hazard instruction
sufficient time to complete and hence prevent the hazard

9 - 27CIT 595

Solution to Example 1 (contd..)

• Better Solution: Data Forwarding
Realize that data value from i1 (to be put in R1) is actually
available at end of cycle 4
Don’t need to wait till S7 to fetch the register file, instead
forward a copy of the data from S4 of i1 to i2’s stage S4

S5
S6

S6S4
S5

S3
S4

S2S1
S3S2S1

0 1 2 3 4 5 6 7
i1
i2

S1: Instruction Fetch

S2: Decode

S3: Register Fetch

S4: Execute/EA

S5: Memory Access (LD/ST)

S6: Write Back (register write)

cycle

9 - 28CIT 595

Data Hazard Example 1: Forwarding

S1/S2

Data
Control S4/S5S3/S4S2/S3 S5/S6

CONTROL

Value R2+ R3 from i1 will be given to
ALU for i2’s computation on the next
clock cycle

A

B

Both i1 and i2
use stage 4 but
1 cycle apart

8

9 - 29CIT 595

Handling Data Forwarding

Requires additional logic to data path
• Additional MUX needs to be place to select between
output of the register file and forwarded input for input A
to ALU

• The control will have additional task to figure whether
there is hazard condition and accordingly set the MUX
control

• Input B to ALU, the existing MUX will needed to be
expanded

i.e. i1: ADD R1, R2, R3
i2: ADD R5, R4, R1

9 - 30CIT 595

Data Path changes due to Forwarding

S1/S2

Data
Control S4/S5S3/S4S2/S3 S5/S6

CONTROL

A

B

9 - 31CIT 595

Data Hazard: Example 2

i1: ADD R1, R2, R3
i2: ST R1, A

S5
S6

S4
S5

S3
S4

S6S2S1
S3S2S1

0 1 2 3 4 5 6 7
i1
i2

i1 completed i.e.
value is written to R1i2 fetches old

value of R1

S1: Instruction Fetch

S2: Decode

S3: Register Fetch

S4: Execute/Evaluate Addr

S5: Memory Access (LD/ST)

S6: Write Back (register write)

cycle

i2 stores old
value of R1

9 - 32CIT 595

Data Hazard Example 2

S1/S2

Data
Control S4/S5S3/S4S2/S3 S5/S6

CONTROL

i2 fetches old
value of R1 i2 stores old

value of R1

i1: R1 not written back
until S5

9

9 - 33CIT 595

Solution to Example 2

• Stall the Pipeline

• Forwarding
Realize that data value (to be put in R1) is actually available at
end of cycle 4 and is also propagated through to next stage
Don’t need to wait till cycle 6, forward a copy of the data to i2’s
stage S5

S5S4S3..
S6

..
S5

..
S4

S6S2S1
S3S2S1

S5
S6

S6S4
S5

S3
S4

S2S1
S3S2S1

0 1 2 3 4 5 6 7
i1
i2

0 1 2 3 4 5 6 7 8 9

i2
i1

cycle

cycle

9 - 34CIT 595

Example 2 Data Forwarding

S1/S2

Data
Control S4/S5S3/S4S2/S3 S5/S6

CONTROL

Add more logic to
select between
regular input vs.
forward input

9 - 35CIT 595

Data Hazard: Example 3

i1: LD R1, A
i2: ADD R2, R1, R2

S5
S6

S4
S5

S3
S4

S6S2S1
S3S2S1

0 1 2 3 4 5 6 7

i2 fetching R1,
gets stale value

i1 completed i.e.
value is written to R1

S1: Instruction Fetch

S2: Decode

S3: Register Fetch

S4: Execute/Evaluate Addr

S5: Memory Access (LD/ST)

S6: Write Back (register write)

cycle

i2
i1

9 - 36CIT 595

Solution to Example 3

• Complete Data Forwarding not possible in this case

• Stall for one cycle and then Forward

Value from memory (to be put in R1) is received
from memory at end of cycle 5 for i1, but i2
needs value of R1 at beginning of cycle 4

S6S5
S6

S4
S5

S3
S4

S2S1
S3S2S1

0 1 2 3 4 5 6 7

i2
i1

cycle

S6S5S4
S6

..
S5

S3
S4

S2S1
S3S2S1

0 1 2 3 4 5 6 7 8

i2

cycle

10

9 - 37CIT 595

Example 3

S1/S2

Data
Control S4/S5S3/S4S2/S3 S5/S6

CONTROL

i1i2
load-use hazard 9 - 38CIT 595

Recap: Branch Instruction

ALU

AB
ADD

BR NZP -1
000001111 11111 11IR

SEXT

9

16

1111111111111111

0100000000011001PC

16

1 0

16

0
N

1
Z

0
P

16

01000000000 11000

16

NZP registers are
set by NZP logic

C
If C = 1, then Branch Target
Address (i.e. Branch Taken) else
PC + 1 (i.e. Branch Not Taken)

PC + 1

9 - 39CIT 595

Control Hazards

• Occurs when we need to make a decision
based on the result of instruction while others
are executing

• Branch Instructions are instructions that make
decision

Alter the flow of execution in a program and give
rise to control hazard

9 - 40CIT 595

Control Hazard

• The problem with branch instructions is that:
1. We find out that instruction is Branch Instr only after
Decode Stage (S2) and by then we have already fetched
the next sequential instr.

2. Branch address is resolved only in the Evaluate
Address phase (S4)

So we have to stall the pipeline till we know which
address to fetch from i.e. PC + 1 or Branch Target
address

3. The instr. before the branch instr. will set Condition
Code (NZP) one cycle before or the same cycle the
branch address is resolved

11

9 - 41CIT 595

Pipeline Hazard with Branch Instruction

S5
S6

……
S6S4S3S2S1

S5
S6

S4
S5

S3
S4

S2S1
S3S2S1

0 1 2 3 4 5 6 7

i2
i1

cycle

BR instr. detected but
next instr. already
fetched

Branch
address
resolved

i3

Instr before BR

BR

Instr. after BR

Condition Code set
by i1 by cycle 4 or
cycle 5 (if instr is LD)

Don’t Fetch any
instruction till
branch resolved
(stall pipeline)

9 - 42CIT 595

Pipeline Hazard with Branch Instruction (contd..)

If branch is not taken then instruction fetched (i3)
can carry along, else its needs to be aborted i.e.
no memory elements should be updated
(requires additional circuitry for doing this)

…

S5
S6

……
S6S4S3S2S1

S5
S6

S4
S5

S3
S4

S2S1
S3S2S1

0 1 2 3 4 5 6 7

i2
i1

cycle

i3

Instr before BR

BR

Instr. after BR

So ultimately we
cannot do anything
till cycle 5, but we
have fetched i3

3 delay slots

9 - 43CIT 595

Branch Instruction Impact CPI

• Hazards increase the # cycles/instr. in pipelined
implementation

• Structural and Data Hazard effects can be minimized

• However, branch hazards cannot be minimized
because we have to wait for following information

Branch address (tells us where to branch)
Condition Code from the previous instruction (tells us whether
to branch or not)

• Most ISAs have some sort of pipelined implementation
Many techniques have been studied to reduce branch delays

9 - 44CIT 595

Control Hazard Solution 1: Reduce the BR Delays

• Compiler resolves branching by rearranging the
machine code to fill delay slots after BR instruction

By inserting useful instruction that can be done without
changing the output of the program

Re-Ordered Instruction Flow
ADD R1, R2, R3
BRz DEST
NOT R6, R6
AND R4, R5, R6
STR R4, A
…

DEST …

Original Instruction Flow
NOT R6, R6
AND R4, R5, R6
STR R4, A
ADD R1, R2, R3
BRz DEST
….

DEST …

Only depends
on previous
instr.

These instructions are independent of
control flow, hence put them after branch
instruction. This way we perform useful
instruction instead of idle delays

12

9 - 45CIT 595

Control Hazard Solution 1: Reduce the BR Delays

• But if this is not possible then compiler will insert NOP
instruction to keep the pipeline full

ISAs provide NOP instructions to insert delay
NOP does nothing, just there to kill some cycles
NOP instructions have all zeros in their bit fields
E.g. NOP opcode in LC3 would 0000 be (bits [15:12])

ADD R1, R2, R3
BRz DEST
NOP
NOP
NOP
…

DEST …

9 - 46CIT 595

Control Hazard Solution 2: Prediction

• Compiler can only help if they are enough instructions to
re-order

• Many ISAs also often predict the outcome of the branch
1. In these ISAs address calculation of branch is coupled

in the same phase as the branch is discovered (i.e.
moved from S4 to S2)

2. There is prediction unit that records history of branch
pattern

3. Once the branch instruction is discovered, the
prediction unit guides processor which instructions to
fetch next

9 - 47CIT 595

Using Prediction Unit

• If prediction is Taken: the instruction that are fetched
for the delay slot are from the target address path (also
calculated in the same stage as BR discovered)

• If prediction is Not Taken: the instructions that are
fetched for the delay slot are from PC + 1 path

• If actual result = prediction, don’t do anything i.e.
continue the processing
Else need to abort the fetched instruction and restart

• Also update the prediction unit with the actual result i.e.
out come the current branch instruction (for future
branches)

9 - 48CIT 595

Pipelining with Branch Prediction

S4S3S2S1
S4
S5
S6

S5S3S2S1
S6S4S3S2S1

S5
S6

S4
S5

S3
S4

S2S1
S3S2S1

0 1 2 3 4 5 6 7

i2
i1

cycle

i3

Instr before BR

BR

Instr. after BR

We know the address
and the direction of
the prediction

Cannot do anything
about i3 (it will be
fetched)

target or PC + 1 i4
target or PC + 1 i5

May aborted
Actual
Condition
Learnt

May be aborted

13

9 - 49CIT 595

Types of Prediction

• Static (wired/fixed)
Always guess “taken” or “not taken”
Effective only with loop control structure

• Dynamic
Another hardware in the datapath keeps tracks of
the branch history as the instructions are executing
E.g. 2-bit branch predictor using saturating counters

9 - 50CIT 595

Example: Two-bit Branch Predictor

• Keep 2-bit history value for each “recent” BR instruction

• Use 2-bit saturating counter
If branch is actually Taken (T), increment the history value
If Not Taken (NT), decrement the history value
00 (Strongly NT),01 (Weakly NT), 10 (Weakly T), 11 (Strongly T)

T

T

Strongly Taken Weakly Taken11 10

0001 T

T

Weakly Not
Taken

NT

NT
NT Strongly Not

Taken

NT

Typically > 90 % correct predictions

9 - 51CIT 595

Prediction helps reduce impact on Avg. CPI
• Each branch instruction takes 1 cycle to complete + additional
cycles (due to branch delays caused)

• Lets say 20% instructions are branches

• Assume that branch predictor is 90% accurate

• Pipeline without Prediction
CPIbranch = Fraction Branches * (1 + Additional Cycles)

= (0.2) * (1 + 3) = 0.8

• Pipeline with Prediction
CPIbranch = Fraction Branches * (1 + 1 + (Misprediction

Rate * Additional Cycles))
= (0.2) *(2 + (1 - .90) * 2)
= 0.44 Assume instr. right after

BR always cause 1
delay (conservative)

9 - 52CIT 595

Compiler + Prediction helps reduce impact on Avg. CPI

• Lets say 20% instructions are branches
• Assume the compiler only finds one useful instruction on
average

Hence additional cycles needed is 2 due to NOPs

• Pipeline with Compiler
CPIbranch = Fraction Branches * (1 + Additional Cycles)

= (0.2) * (1 + 2) = 0.6

• Now, if we kick in the predictor (90% accurate) for 2 NOPs
CPIbranch = Fraction Branches * (1 + [Misprediction Rate * Additional

Cycles])
= (0.2) *[1 + [(1 - .90) * 2])
= 0.24

14

9 - 53CIT 595

JUMP Instruction is also Control Hazard

• Jumps don’t have conditions i.e. jumps are unconditional
branches (we will definitely go to the target address)

• Have to wait till we evaluate the address i.e. read address
from register file (e.g. JMP R3)

S5 S6S4S3S2S1
……………
S6S5

S6
S4
S5

S3
S4

S2S1
S3S2S1

0 1 2 3 4 5 6 7 8cycle
JUMP

Instr. after JUMP

Instr. (jumped to)

i2
i1

i3

Don’t fetch any new instr. till
we resolve the address

Jump address resolved Jump discovered

9 - 54CIT 595

Delays due to JUMP instruction

• Additional delay of 2 cycles will be incurred
one instruction that will eventually be aborted and
one stall for not fetching next instruction after discovering
Jump instruction

• Branch Prediction cannot help in this case as we are
not waiting on a condition

• Any penalty if to be reduced will fall on compiler i.e.
find useful instructions to do in the 2 delay slots

9 - 55CIT 595

Deeper Pipelines and Misprediction Penalty

• Dividing the pipeline into even smaller stages
increases frequency (i.e. lowers time/cycle)

• But deeper the pipeline, will cause branch resolution to
later stages, in turn increasing the CPI due misprediction
penalty

• If we filled pipeline with instructions from the wrong path then
we wasted cycles for those instructions

• Hence the performance does not scale well with
deeper pipelines

9 - 56CIT 595

Exceptions
Exceptions are used for signaling a certain condition

You already know
1. I/O request: device requests attention from CPU
2. System call or Supervisor call from software (TRAP in LC3, I/O

functions in C)
3. Arithmetic: Integer or FP, overflow, underflow, division by zero
4. Invalid opcode: CPU was given an wrongly formatted instruction
5. Memory protection: read/write/execute forbidden on requested

address

Yet to learn (or may be heard)
1. Page fault: requested virtual address was not present in main

memory
2. Misaligned address: bus error
3. Hardware malfunction: component failure

15

9 - 57CIT 595

Handling I/O requests and System Calls

• I/O request either via system calls (TRAP) or interrupt
signals

• Once we encounter such a request
Stop fetching further instructions
Complete all instructions in the pipeline before interrupt/sys
call occurred

In the case of sys call abort instructions after sys call
Save the state of the processor
Jump to the servicing routine to handle interrupt/sys call

• In the case of interrupts we might have multiple
requests, but the one with higher priority will be serviced

• Separate hardware determines priority

9 - 58CIT 595

Handling All other Exceptions

• Let the instruction(s) before exception condition
instruction complete

• Abort the instructions after excepting instruction

• Save the state of the machine (esp. PC of the
excepting condition instruction) to return back and
continue from faulting instruction

• Start fetching instructions in memory where the
exception handling routine instructions are kept

• This is known as implementing precise exceptions i.e.
undo all instructions after the excepting instructions and
restart from the excepting instruction

9 - 59CIT 595

Pipelining Complications

• Due to overlapping of instruction execution,
multiple exceptions can occur in the same clock
cycle

Memory-protection violation, Page fault on instruction

fetch, misaligned memory access

Memory
Access

Arithmetic exception Execute

Undefined InstructionDecode

Memory-protection violation, Page fault on instruction

fetch, misaligned memory access

Fetch
Problem Exceptions OccurringStage

9 - 60CIT 595

Pipeline Complication: Example

The second instruction (ADD) produces an exception
first, and then the first (LDR) instruction is restarted, then
second instruction is executed twice!!!

S6S5
S6

S4
S5

S3
S4

S2S1
S3S2S1

0 1 2 3 4 5 6 7 8cycle

LDR
ADD i2

i1

Memory protection
violation by LDR

Page fault by ADD

16

9 - 61CIT 595

Solution to Multiple Exceptions in a Pipeline

Maintain exception vector for each instruction
• Some hardware logic handles this (similar to how NZP

registers are maintained)
• Vector is nothing bit a n-bit register and each bit position

indicating a stage of the pipeline
• To indicate exception set the appropriate bit position

When instruction enters the last stage of the pipeline,
check the exception vector, and handle the exceptions in
instruction order

• If the bit is set means that the instruction had faulted
• Abort all instructions following this instruction
• Save the state of the machine
• Branch to appropriate service routine

9 - 62CIT 595

Summary of Pipelining

• Improves performance
• Improves runtime of program

Reducing the clock cycle time
– Increase Frequency (faster processing)

CPI = 1 (ideal)
• Speedup = #number of pipe stages (ideal)

• However comes at price of greater CPI penalties
• Data Hazard (Load-use delay)
• Control Hazard (Branch/Jump delays)
• Exceptions

9 - 63CIT 595

S1/S2

Data
Control S4/S5S3/S4S2/S3 S5/S6

CONTROL

LC3 pipelined

