
Interrupts

How do we know a device is ready?

--- WAIT for device

      LOOP, reading the status register

OR

---- DON'T WAIT
      Have device tell us. But,

      How can device talk to us?

      When will it speak?

      What should we do then?

      What about currently executing    
               program?

KB handler's job is to move data from device register to memory.



Listening for the Device's Call

--- the interrupt process

Enabling interrupts:

        KBSR[ 14 ]   <===   1 

allows controller to be interrupted.

When

    ready bit  <=== 1

    FSM is alerted

Current Program
is trying to 
fetch next instruction

Save the state of
Current Program.

We will want to
restart it.

Next instruction fetched is
handler's 1st instruction.



The Effect:

Device does pseudo "Trap";
gets OS's attention.

PC of Current Program saved.

Handler saves registers as needed.
Handler services device.
Handler returns by executing RTI.

RTI unsaves PSR, PC;
restarts Current Program.

Current Program never knows anything happened 
(unless checks w/ OS).

If OS is designed so that another program can be 
executed, 
saves a lot of cycles versus polling.

Privilege bit:

      supervisor (0) can execute 
      some instructions that 
      user (1) cannot.

      supervisor (0) can R/W 
      some memory locations that 
      user (1) cannot.

Priority bits:

      Higher priority code, 
      cannot be interrupted by
      lower priority code.
      (Handler's for prioritized devices.)

CC (NZP) bits:

    Branching depends on this, 
    must be saved on interrupt.

    Current Program would not make
    correct branches if CC not saved.



SavedSSP

SavedUSP

HW Manipulation of Stack Pointer

PUSH:  R6--
POP:    R6 ++ 
SWITCH STACKS:
    R6    ==> Mem
    Mem ==> R6

( ADD, AND, NOT )

( ST )

( R6 )( R7: JSR, etc. )

( R6 )

USER might not even have
R6 pointing at its own stack.



PRIORITY ENCODER

   8  1-bit inputs    ===>   3-bit code  for highest-priority device.

Interrupted program has priority 
PSR[10:8].

Quirk:     IRQ[0] == 1    is only non-zero input      ===>     code == 000
                                         All inputs == 0               ===>     code == 000

Extra output: NotZero



IF ( ( INT_Priority  >  current_Priority )  AND  notZero )

                               1  ===>   INT



RTI is privileged instruction,
Only supervisor can execute.



  ;;;-------------------------------
  ;;;-- kbInt - VT x0180:
  ;;;--     Keyboard interrupt service
  ;;;-------------------------------
  kb_init:
        ;;;-- Set-up interrupt vector.
        LEA R1, kb_INT
        STI  R1, KB_INT_vector
        ;;;-- Set-up KB_Data_Buffer.
        ;;;-- Set-up Trap routine vector.
        ;;;-- Enable KB interrupts.
        JMP R7

  kb_INT:
        ;;;---- Disable interrupts, KBSR[14] <== 0.
        ;;;---- Read KBDR, store data.
        LDI R0, KBDR
        STI R0, KB_Buff_head
        ;;;-- Move head pointer.
        ;;;-- Enable interrupts, KBSR[14] <== 1.
        RTI
 
  kb_Trap (x33):
        ;;;-- KB request-data service.
        ;;;-- Send data to user from buffer.
        ;;;-- (If no data, switch to other program.)
        ...
        JMP R7

  kb_ConstantDataArea:
      KB_INT_vector:          .FILL x0180
      KB_TRAP_vector :     .FILL x0033
      KBSR:                          .FILL xFE00
      KBDR:                         .FILL xFE02
  kb_VariableDataArea:
      KB_Data_Buffer:        .BLKW #80
      KB_Buff_head:           .BLKW #1 
      

;;;=============================
;;;-- OS boot/initialization
;;;=============================

  ;;---- Set up super's stack.
  LD  R6, SUPER_STACK_ADDR       

  ;;---- Init traps, exceptions, and interrupts.
  JSR kb_init

  ;;---- jump to main(), never returns.
  JSR mainOS

;;;------  USER code
   ...
TRAP x33    ;;;---- Get KB data
  ...                ;;;---- Use KB data




