
See P&P Appendices A and C:
 LC-3 ISA, TRAPS, Devices, Interrupts, Exceptions.

.Orig x3000

LD R4R4R4R4, DATA_POINTERDATA_POINTERDATA_POINTERDATA_POINTER
LDR R6R6R6R6, R4R4R4R4,,,, #0 #0 #0 #0
LDR R5R5R5R5, R4R4R4R4,,,, #0 #0 #0 #0
LDR R7R7R7R7, R4R4R4R4,,,, #1 #1 #1 #1
jsrr R7R7R7R7
TRAP x25

DATA_POINTERDATA_POINTERDATA_POINTERDATA_POINTER::::
 .FILL .FILL .FILL .FILL GLOBAL_DATAGLOBAL_DATAGLOBAL_DATAGLOBAL_DATA

mainmainmainmain::::

 JMP R7 JMP R7 JMP R7 JMP R7

func:func:func:func:

 JMP R7 JMP R7 JMP R7 JMP R7

GLOBAL_DATA:GLOBAL_DATA:GLOBAL_DATA:GLOBAL_DATA:
 .FILL x .FILL x .FILL x .FILL xF000F000F000F000 ;;; ;;; ;;; ;;; Stack bottomStack bottomStack bottomStack bottom
 .FILL x .FILL x .FILL x .FILL x3007300730073007 ;;; ;;; ;;; ;;; address of mainaddress of mainaddress of mainaddress of main
 .FILL x1234 ;;; int x = 0x1234 .FILL x1234 ;;; int x = 0x1234 .FILL x1234 ;;; int x = 0x1234 .FILL x1234 ;;; int x = 0x1234
 .FILL x .FILL x .FILL x .FILL x0010001000100010 ;;; ;;; ;;; ;;; int y = 16int y = 16int y = 16int y = 16
 .FILL .FILL .FILL .FILL funcfuncfuncfunc ;;; ;;; ;;; ;;; address of funcaddress of funcaddress of funcaddress of func

;------ get data from variable y:

 ADD R2, R4, #2
 LDR R2, R2, #0

;----- jump to func's location:

 ADD R7, R4, #3
 JSRR R7

C compiler generated

MEMORY ADDRESS IN MEMORY

Pointer access and usage

A pointer "points to" an object.

A pointer == an address.
A pointer variable == location containing address.

A pointer refers to an object: data or instructions

 --- fetch address from location

 --- R/W data to/from address OR jump to address

MAR <== PC + IR[8:0] (get location where address is)
MAR <== MDR (get address, use it)
R2 <== MDR (get data at address)

Idea: 16-bit address using only 9 bits in IR.

 LDI R2, myPTR
 ...
 myPTR: .FILL xFE02

R7 <== PC
MAR <== IR[7:0] (get address where address is)
PC <== MDR (get address == jump)

Idea: make full 16-bit jump using only 8 bits in IR.
Also, how to jump to OS trap routine w/o knowing where
trap routine's code is. Allows OS to relocate itself: just
change vector table entry.
 trap x2 ;--- jump to OS service routine x02.
 ...

Alternative: Move VT entry into a register, use jssr:
 ldi r1, VT2
 jssr r1
 ...
 VT2: .FILL x0002

Yet another address-in-memory mechanism.
Just like TRAP, but not an instruction.

Something goes wrong: jump to OS routine, Exception
I/O device sends a signal: jump to OS routine, Interrupt

Aside: Using what we had above to eliminate ldi, we
could eliminate both LDI and TRAP instructions from
the LC3's ISA: we would have two unused opcodes to
play with.

EXCEPTIONS
---- detected during instruction execution.
 "illegal opcode"
 detected in state-32 (decode):
 VECT_REG <== x0100.

INTERRUPTS
---- generated by device interrupt logic
---- detected in state-18 (fetch)
 keyboard event:
 VECT_REG <== x0180

LC3 Controller States,
13: opcode exception
44: privilege exception
49: interrupt

Not the same as TRAP.
For TRAP, currently executing code,
---- knows a jump is occurring;
---- can SAVE its own STATE beforehand;
---- knows its CC state could change: does not BR immediately after TRAP.

I. Access top item in stack.

LDR R2, R6, #0

 R2 <== MEM[R6]

Stack Pointer (SP) is R6

II. Put new item on top of stack: PUSH

III. Remove item from top of stack: POP

ADD R6, R6, #-1
STR R1, R6, #0

LDR R3, R6, #0
ADD R6, R6, #1

When an exception/interrupt occurs

---- PSR altered immediately, before the next instruction is fetched.

---- PC altered, i.e., a jump.

 PC could go to R7, but what is in R7 (function calls, nested interrupts)?

---- SP (R6) altered to push state, it needs to be saved.

---- Regs can be saved by service routine code.

===> Hardware, not instruction execution, must save state!

37, 41 push PSR
 SP <== SP-1
 MAR <== SP-1
 Mem <== MDR
43, 47, 48 push PC
 MDR <== PC-1
 SP <== SP-1
 MAR <== SP-1
 Mem <== MDR
50, 52, 54 jump
 MAR <== Vector
 MDR <== Mem
 PC <== MDR

49 INT
 MDR <== PSR
 PSR[10:8] <== 3'b111
 PSR[15] <== 1'b0
 <PSR[15] == 1?> save R6

When exception/interrupt routine COMPLETES

--- RESTORE Regs, done in service routine
 execute LD instructions

--- RESTORE PC, PSR,
 execute the RTI instruction:

 Pop PC
 Pop PSR
 Restore SP (see R6 save/restore hardware)

8 RTI
 MAR <== SP

36, 38, 39
 MDR <== Mem
 PC <== MDR
 SP <== SP+1
 MAR <== SP+1

40, 42, 34
 MDR <== Mem
 PSR <== MDR
 SP <== SP+1

 < PSR[15] == 1? >

LC3 States for Interrupt

