
Use n-bit scaled-number representation? Integer i represents k X i; k is some fraction.

 ===> geometrical-progression of scaled integers

% Error is consistent everywhere.

Would it be handy to have Real number arithmetic?

Can we approximate that?

S: 0 = + 1 = -

E is pos. or neg.
8-bit 2s-comp.

Do we have enough bits for this?

Maybe we can live with that?
Maybe use -127?

We need 1.

Is there some other value we
can do without?

Use it to represent 0?

How about sacrificing the smallest value?
Most negative 8-bit exponent? 10000000 = -128

 8-bit 2s-comp. exponent range is -127 to +127

Sorting is common.

Check x > y seems hard.

Check n > m for ints is easier: (n - m) and check sign bit.

Check x > y using integer hardware?

Treat x and y as integers, do integer subtraction?

Do (x - y):

 x > y as 2's comp. integers

pos. FPs > neg. FP

It works, so far.

Now we check case when x and y have same sign.

Not good:

negative exponent makes it look like x < y

But, as FP, x > y

value 3-bit 2s-comp new code

______ ___________ _________

 +3 011 110

 +2 010 101

 +1 001 100

 0 000 011

 -1 111 010

 -2 110 001

 -3 101 reserved 000 for 0

 -4 100 reserved 111 for NaN

New code = 2s-comp. + 011

"excess 3 code"

3-bit exponents AS unsigned ints.

Negative exponents
 look smaller than
Positive exponents

Fractional parts are already unsigned:

We can sort FPs!

1. Convert exponents: excess-3 ===> 2s-comp.

2. Shift/Align fractional parts: make exponents same,
 shift x's fractional part right 5 places

3. ADD

4. re-Normalize: shift fraction and adjust exponent (not needed in this example)

5. Round to 4-bit fraction: round-to-nearest (or round-to-zero or ...)

6. Convert exponent (+3)

Uh Oh. That's y ??!

Be Careful: discretization, rounding
errors can add up ===> big problems.

2. ADD exponents
3. Shift fractions,
 mult. unsigned ints,
 add exponents

4. Normalize

5. Add exponents

6. Round

1. convert exponents

(might have to normalize, then round, then normalize again.)

7. Convert exponent and encode

Round-To-Nearest

Always round up? Always down?

50-50 chance of either up or down?

 Let b0 decide ===> 50-50 it is 0 or 1

Extra FP unit bits:
R-shifting sends bits to guard,
round, and sticky bits.

Sticky stays 1 once set.

Either way,
 b0 == 0
after rounding

"round to even"

Subtract largest possible power of 2:

28 - 16 == 12 ===> save 10000

Subtract next largest possible power of 2 from remainder:

12 - 8 == 4 ===> save 1000

Subtract next possible power of 2:

4 - 4 == 0 ===> save 100

