
X2 MULT == Parallel load, Left-Shift Register

Parallel Load : we=1 and S=0: Q[2:0] <=== D[2:0]

Shift Left : we=1 and S=1: Q[2:0] <=== { Q[1:0], IN }

Signed numbers:

1. make unsigned;

2. multiply;

3. make signed;

Does X 2 == Left Shift? Works for powers of 2.

How about in the
general case?

All bits of x are shifted left.

General MULTIPLY: y X x
 y : Multiplier

 SUM of partial products (PPk)

 PPk == x Left-Shifted k

 k-th bit of y is,

 0 : add 0

 1 : add PPk

 5 X x == (101) X (xn xn-1 ... x1 x0)

 ==

 (001) X xn xn-1 ... x1 x0

 + (000) X xn xn-1 ... x1 x0

 + (100) X xn xn-1 ... x1 x0

 ==

 xn xn-1 ... x1 x0 (0 left shifts)

 + 0 0 0 ... 0 0 0 (1 left shift)

 + xn xn-1 ... x1 x0 0 0 (2 left shifts)

n-bit MULTIPLIER

S = 0;

for i=0; i < n; i++

 ADD;

 SHIFT;

--- Cost, Hardware:

 3.5 2n-bit registers,
 1 2n-bit ADD
 1 2n-bit MUX: O(2^n)
 1 controller (iterator)

 ===> O(2n) + O(2^n)

--- Cost, Delay per iteration

 logn for MUX per iteration
 2n for ADD per iteration

 ===> O(n (logn + 2n))

Can we do better?

--- Hardware cost?

 We can get rid of MUX
 (How? Hint, write-enable.)

 Other ways to use hardware?

--- Delay cost?
 Alternative methods?

3-bit Parallel Array Multiplier

--- bit-wise MULT == AND

--- 9 1-bit MULTs in parallel

--- 6-bit output

--- 6-step ADD delay

n-bit Array Multiplier

--- Hardware: O(n^2) (1-bit ANDs)
 +
 O(2n) (1 2n-bit ADD)

--- Delay: O(2n) (2n-bit ADD)

divByAddition(x, k)

 q = 0

 sum = 0

 LOOP

 sum = sum + k

 (sum > x)? return q

 q++

divBySubtraction(x, k)

 q = 0

 r = x

 LOOP

 (r < k)? return q

 r = r - k

 q++

 IF y * 2 === Left-Shift THEN y / 2 === Right-Shift

R-Shift(n) == divide-by-2^n . If divisor is not power of 2?

ctl = 0

 Logical R-Shift
 fills zeroes at left

ctl = 1

 Arithmetic R-Shift
 2s-comp. sign extension

think, unary representation

1. Try n-th power of 10, qn00...0

 x <=== x - k x qn00...0

IF x < 0 qn = 0

2. Try (n-1)-th power of 10

 x <=== x - k x qn-100...0

IF x non-negative save qn-1

 x <=== x - k x qn-100...0

Repeat until x < k

q <== sum of saved partial quotients

 == qn qn-1 ... qn-2 q1 q0

We can implement this method in hardware. In binary, qn is always 1 or 0.

Try qi = 1 IF non-negative, save qi = 1

 ELSE save qi = 0

Binary INTEGER (unsigned) DIVISON
 x = kq + r k = divisor, q = quotient, r = remainder (ignore for now). FIND q.

After each SUB

 register q gets 1 or 0 as low bit (qi)

 register x is written if qi = 1

 register k Right-Shifted (initially, k is Left-Shifted n bits)

 register q Left-Shifted (after n shifts qn is left-most bit in q)

Approximate Methods

MUL via approx. log

k = n
until(L-Shift(N).carry_out == 1) k--

j = n
until(L-Shift(M).carry_out == 1) j--

L-Shift(P, k+j)
R-Shift(N, n-(k+j))
R-Shift(M, n-(k+j))

P <== N + M + P

3 X 4 (notation, let RT2 == SQRT(2))

Interpolate to log(3):
4 - 2.828 == 1.172 value range from 2 RT2 to 4
3 - 2.828 == 0.172 value range from 2 RT2 to 3
0.172 / 1.172 == 0.148 value fractional range to 3
2 - 1.5 = .5 log range from log(2 RT2) to log(4)
.5 X 0.148 = 0.074 interpolate log fractional part to log(3))
log(3) = 1.5 + 0.074 = 1.574 interpolate log(3)

 real value is about 1.585, we are off by about 1 part in 160

mult by adding logs:
log(3) + log(4) == (1.574 + 2) == 3.574

Interpolate to exp2(3.574):
3.5 - 3.574 == 0.074 (range of logs from 3.574 to 4)
0.074 / 0.5 == 0.148 (fractional range of logs)
16 - 8(1.414) = 16 - 11.31 == 4.69 (range of values)
(0.148)(4.68) == 0.694 (fractional part of range)
11.31 + 0.694 == 12.004 off by about 1/3000

