
X2 MULT  ==  Parallel load, Left-Shift Register

Parallel Load :      we=1 and S=0:        Q[2:0]   <===   D[2:0]  

Shift Left :             we=1 and S=1:        Q[2:0]   <===  { Q[1:0], IN }   

Signed numbers:

1. make unsigned;

2. multiply;

3. make signed;

Does X 2  == Left Shift? Works for powers of 2.

How about in the 
general case?

All bits of x are shifted left.



General MULTIPLY:      y  X  x
    y : Multiplier  

    SUM of partial products (PPk)

    PPk   ==   x  Left-Shifted  k

    k-th bit of  y is,

            0 :     add    0

            1 :     add   PPk 

  5  X  x    ==    ( 101 )   X   (  xn  xn-1  ...  x1  x0 )

                   ==

                                                 (001) X     xn  xn-1  ...  x1  x0

               +        (000) X   xn  xn-1  ...  x1  x0   

               +      (100) X   xn  xn-1  ...  x1  x0

                   ==

                                xn  xn-1     ...  x1  x0          ( 0 left shifts )

           +   0  0   0      ...    0   0  0      ( 1 left shift )

     +   xn   xn-1     ...     x1     x0  0  0      ( 2 left shifts )

n-bit MULTIPLIER

S = 0;

for  i=0;  i < n;  i++

    ADD;

    SHIFT;

--- Cost, Hardware:

       3.5  2n-bit registers, 
       1     2n-bit ADD
       1     2n-bit MUX: O( 2^n )
       1    controller (iterator)

    ===> O( 2n ) + O( 2^n )

--- Cost, Delay per iteration

       logn for MUX per iteration
       2n for ADD    per iteration

    ===>  O( n ( logn + 2n ) )

Can we do better?

--- Hardware cost?

    We can get rid of MUX
    (How? Hint, write-enable.)

    Other ways to use hardware?

--- Delay cost?
     Alternative methods?



3-bit Parallel Array Multiplier

--- bit-wise MULT == AND

--- 9 1-bit MULTs in parallel

--- 6-bit output

--- 6-step ADD delay

n-bit Array Multiplier

--- Hardware:  O( n^2 )    (1-bit ANDs)
                        +
                       O( 2n )      ( 1 2n-bit ADD)
  
--- Delay:        O( 2n )       (2n-bit ADD)



divByAddition( x, k )

    q   = 0

    sum = 0

    LOOP

        sum = sum + k

       ( sum > x )? return q

        q++

    

divBySubtraction( x, k )

    q = 0

    r = x

    LOOP

        ( r < k )?  return q

         r = r - k

         q++

 IF      y * 2    ===   Left-Shift       THEN        y / 2    ===    Right-Shift

R-Shift(n) == divide-by-2^n .    If divisor is not power of 2?

ctl = 0

     Logical R-Shift
          fills zeroes at left

ctl = 1

      Arithmetic R-Shift
          2s-comp. sign extension

think, unary representation



1. Try n-th power of 10,  qn00...0

         x     <===    x  -  k x qn00...0

IF   x  <  0       qn  =  0

2. Try (n-1)-th power of 10

         x     <===    x  -  k x qn-100...0

IF  x non-negative       save  qn-1 

          x  <===    x  -  k x qn-100...0

Repeat until   x  <  k

q  <== sum of saved partial quotients

    ==   qn qn-1  ... qn-2 q1 q0

We can implement this method in hardware.       In binary,  qn   is always 1  or  0.

Try qi  = 1 IF non-negative,    save  qi  = 1

                 ELSE     save  qi  = 0



Binary INTEGER (unsigned) DIVISON
   x  = kq + r          k = divisor,   q = quotient,  r = remainder  (ignore for now).   FIND q.

After each SUB

     register  q  gets  1  or  0  as low bit  ( qi )

     register  x  is written if  qi  = 1

     register  k  Right-Shifted   ( initially,  k  is  Left-Shifted n bits )

     register  q  Left-Shifted     ( after n shifts  qn  is left-most bit in q )



Approximate Methods

MUL via approx. log



k = n
until( L-Shift( N ).carry_out == 1 )       k--

j = n
until( L-Shift( M ).carry_out == 1 )       j--

L-Shift( P, k+j )
R-Shift( N, n-(k+j) )
R-Shift( M, n-(k+j) )

P <== N + M + P





3 X 4             ( notation, let RT2 == SQRT(2) )

Interpolate to log(3): 
4 - 2.828  ==  1.172                   value range from 2 RT2 to 4
3 - 2.828  ==  0.172                   value range from 2 RT2 to 3
0.172 / 1.172  ==  0.148            value fractional range to 3
2 - 1.5 = .5                                log range from log(2 RT2) to log(4)
.5 X 0.148  = 0.074                    interpolate log fractional part to log(3))
log( 3 ) = 1.5 + 0.074 = 1.574     interpolate log(3)

                          real value is about 1.585,  we are off by about 1 part in 160

mult by adding logs:
log(3) + log(4) == (1.574 + 2 )  == 3.574

Interpolate to exp2( 3.574 ):
3.5 - 3.574  ==  0.074                             (range of logs from 3.574 to 4)
0.074 / 0.5  ==   0.148                             (fractional range of logs)
16 -  8(1.414) = 16 - 11.31 ==   4.69       (range of values)
(0.148)(4.68) == 0.694                              (fractional part of range)
11.31 + 0.694  ==  12.004           off by about 1/3000


