- D*i* is a "digit", a symbol for a value === value(D*i*).
- B is a value, the "base" of the number notation.
- Given a string of digit chars, $D_n D_{n-1} D_{n-2} \dots D_1 D_0$

numbers

there is a rule, an algorithm, to find the value it represents.

unsigned 3-bit binary:

---- { D*i* } = { "0", "1" }

value("0") == {}
 the empty set

value("1") == { {} }
the set containing the empty set

value(110) =
$$1 \cdot 2^2 + 1 \cdot 2^1 + 0 \cdot 2^0$$

 $\int value(1)$

 $110 \longrightarrow D_{z} = 1 \quad D_{1} = 1 \quad D_{2} = 0$

What other number values are we interested in?

Are other encodings useful?

 \mathbf{O}

3-bit Unsigned Scale Integers

3-bit Sign-magnitude Integers

CODE VALUE interpretation		CODE	VALUE interpretation	
000	0	000	+0	
001	8	001	+1	
010	16	010	+2	
011	24	011	+3	
100	32	100	- 0	
101	40	101	-1	
110	48	110	- 2	
111	56	111	- 3	

3-bit 2s-Complement Integers

CODE	VALUE interpretation	000 1
000 001 010 011	0 +1 +2 +3	-1 1 1 -1 $+1$ -2 10 -1 $+1$ $+1$ -1 -1 $+1$ -1 -1 -1 $+1$ -1 -1 -1 -1 -1 -1 $+1$ -1 -1 -1 -1 -1 -1 -1 $-$
100	- 4	
101	- 3	
110	- 2	
<mark>1</mark> 11	- 1	2s-Complement 100 convenient for addition/subtraction

3-bit unsigned arithmetic, ignoring Carry/Borrow

```
====> MOD 8 arithmetic

Moving -3 == Moving +5

Subtract 3 == Adding +5

010 + 101 == 111

+2 -3 -1
```

We can represent negative numbers. We can do Add and Sub using only an adder.

ADD/SUb w/ signed-magnitude? How?

$$\chi \geq 0 \longrightarrow -\chi = \lim_{mod \geq n} \chi^n - \chi$$

All the way around is + 2ⁿ

Stopping short by x is

Sanity check
$$-(-x)$$
?
 $-x \longrightarrow (2^{n} - x)$
 $-(-x) \longrightarrow 2^{n} - (2^{n} - x)$
 $= x$
 $-(-x) = x$
in 2's comp.

Try
$$(-(-3))$$
 in $n=3$ 2's comp : $2^{n} = 2^{3} = 8$
 $(-3)_{2's \ comp}$ $2^{n} - 3 = 8 - 3 = 5$
 $(-(-3)_{2's \ comp})_{2's \ comp}$ $2^{n} - 5 = 8 - 5 = +3$

Does (2ⁿ - x) work all the time?

Does "flip bits and add 1" work all the time?

zero 0000 ==> 1111+1 ==> 0000

most positive0111 ==> 1000+1 ==> 1001in between0110 ==> 1001+1 ==> 1010least positive0001 ==> 1110+1 ==> 1111

least negative	1111	==>	0000+1	==>	0001
in between	1011	==>	0100+1	==>	0101
most negative	1000	==>	0111+1	==>	1000 !

OK! Carry doesn't propagate to make result positive.

Oops. Carry propagates, makes result negative.

Subtraction Using an ADDER

Produce - x in 2s-Complement (regardless of whether x is + or -):

Negate bits===>NOT each bitthen add 1===> $C\theta = 1$

A + 2s(omp(B))

$$A - B = A + (-B)$$

