
Positional notation for numbers

Di is a "digit",
 a symbol for a value === value(Di).

B is a value,
 the "base" of the number notation.

Given a string of digit chars,
 Dn Dn-1 Dn-2 ... D1 D0

there is a rule, an algorithm,
 to find the value it represents.

unsigned 3-bit binary:

--- { Di } = { "0", "1" }

 value("0") == {}
 the empty set

 value("1") == { {} }
 the set containing the empty set

--- base, B == { {}, { {} } }
 written "2"

1-bit ADDITION:

 Cin

 A

 + B

 Cout S

w/ Carry In:

0 0 0
0 1 1
1 0 1
1 1 0

0 0 1
0 1 0
1 0 0
1 1 1

Delay: 1 per gate

7 for S; 3 for Cout

4-bit Full Adder:

 A3 A2 A1 A0

 + B3 B2 B1 B0

 C4 S3 S2 S1 S0

SUBTRACTION:

 X0

 - Y0

 B1 S0

w/o Borrow In:

w/ Borrow In:

What other number values are we interested in? Are other encodings useful?

A + B > 7 ===> Overflow Error

 S == (A+B) mod 8 < 8

A - B < 0 ===> Overflow Error

 S == (A-B) mod 8 > -1

 3-bit Unsigned Scale Integers

CODE VALUE interpretation
 ______ ________________

 000 0
 001 8
 010 16
 011 24
 100 32
 101 40
 110 48
 111 56

 3-bit Sign-magnitude Integers

CODE VALUE interpretation
 ______ _________________

 000 +0
 001 +1
 010 +2
 011 +3
 100 - 0
 101 - 1
 110 - 2
 111 - 3

 3-bit 2s-Complement Integers

CODE VALUE interpretation
 ______ _________________

 000 0
 001 +1
 010 +2
 011 +3
 100 - 4
 101 - 3
 110 - 2
 111 - 1

Shannon Coding? How many bits do we
need to represent something?

2s-Complement

convenient for

addition/subtraction

3-bit unsigned arithmetic, ignoring Carry/Borrow

 ====> MOD 8 arithmetic

Moving -3 == Moving +5

Subtract 3 == Adding +5

 010 + 101 == 111

 +2 -3 -1

We can represent negative numbers.
We can do Add and Sub using only an adder.

ADD/SUb w/ signed-magnitude? How?

All the way around is + 2^n

Stopping short by x is

 2^n - x

2sComp(x):

Negate bits,
add 1.

Subtraction Using an ADDER

Produce - x in 2s-Complement (regardless of whether x is + or -):

Negate bits ===> NOT each bit
then add 1 ===> C0 = 1

borrow
 = bit flip.

1st non-zero bit
copied to S:
 borrowed = 10
subtract bit = - 1

 sum bit = 1

Is there a simple, general method?

NB--These are the

negated bits of x.

Does (2^n - x) work all the time?

Does "flip bits and add 1" work all the time?

zero 0000 ==> 1111+1 ==> 0000

most positive 0111 ==> 1000+1 ==> 1001
in between 0110 ==> 1001+1 ==> 1010
least positive 0001 ==> 1110+1 ==> 1111

OK! Carry doesn't propagate to make result
positive.

least negative 1111 ==> 0000+1 ==> 0001
in between 1011 ==> 0100+1 ==> 0101
most negative 1000 ==> 0111+1 ==> 1000 !

Oops. Carry propagates, makes result negative.

Adding same signs, and sign flips:
 Overflow ERROR

