CODING and INFORMATION We need encodings for data.

The Info Game

--- Knower knows where ball is.

--- Asker wants to know where it is.

--- Only ask YES/NO questions.

ARE ALL questions equally informative?

- **--- What's the MIN number of questions?**
	- **--- average case?**
	- **--- worst case?**
	-

 --- best case? --- Is there a good series of questions?

--- How much information does an answer give?

Suppose equally likely in each box. ask, "in (x, y) "? What's expected number of questions? **P(Hit 1st) = 1/16 P(Hit 2nd) = P(Hit 2nd | Miss 1st) P(Miss 1st) = (1/15) (15/16) = 1/16 P(Hit 3rd) = (1/14) * P(Miss 2nd and 1st) = (1/14) (14/15) (15/16) = 1/16** $E(n) = 1*(1/16) + 2*(1/16) + ... + 15*(1/16) + 15(1/16) = (1+2+3+...+15+15)/16 \sim 81/2$

Does that mean there are \approx 8 bits of information?

What if we asked questions so that the answer is 50/50 yes/no each time?

Always takes 4 quartions. -> 4 bits of information? $Prob = \frac{1}{2}$ \rightarrow 1 bit? amount of information is $-log_2(p) = 1$ bit? per question

How about sending actual bits?

There are 16 boxes, label each w/ 4 bits.

question = "h next bit 0?"
$$
Prob(ya) = Prob(no) = \frac{1}{2}
$$

4 bits sent, info is 4 bits.

 $\left\{\begin{array}{c} \text{Prob}(\text{dat on } R) = \frac{3}{4} \end{array}\right\}$

How much context information must we share for this to work?

Which bit comes first? ...

Game: Darts Info

Throw dart ====> uniform probability Set divider so that 1/4 of area is on left side.

Ask, "Dart on Left side?"

Prob(yes) =
$$
1/4
$$
 $\rightarrow -\log(2^{-2}) = 2 \text{ bits}$
Prob(no) = $\rightarrow -\log(3/4) \approx 1/2 \text{ bit}$ $\sqrt{\text{question}} = \text{``is dart left of here?''}$

Expected number of bits of info per question?

$$
E = (2 \text{ bits}) Prob(2 \text{ bits}) + (2 \text{ bit}) Prob(\& \text{ bit})
$$
\n
$$
= (2 \text{ bits}) (\frac{1}{4}) + (2 \text{ bit}) (\frac{3}{4}) = \frac{7}{8} \text{ bit}
$$

Extreme Case Let's see what happens if we move divider far to left.

$$
Prob(yes) = \frac{1}{2}10 Prob(no) = 1 - \frac{1}{2}10
$$

\n
$$
E = -\log(\frac{1}{2}n) (\frac{1}{2}n) + - \log(1-\frac{1}{2}n) (1-\frac{1}{2}n)
$$

\n
$$
= (10 bits)(2-n) + (\sim 0 bits)(\sim 1)
$$

\n
$$
\approx \frac{1}{100} bits
$$
 pen question

$$
Thm \tE \t{a} max if Prob(ya) = P_{rob}(no)
$$

Expected (Avg.) bits of information, per message Shared Context: Pool of Messages Encoding/Decoding Method

Suppose our pool of messages is { a, b, c, d }.

Suppose the probabilities of sending/receiving are,

Prob(a) == 0.1 Prob(b) == 0.4 Prob(c) == 0.2 Prob(d) == 0.3

Two questions:

1. What is the average information bit rate?

2. How can we encode messages to approximate that minimum bit rate?

Shannon Information Theory is also called

"Shannon Coding Theory" "Shannon Minimum Compression Theory"

Huffman Coding code by pairing least likely messages to get 50/50

We are sending more bits than information content, but we are very close.

MIN-Length code ==> MAX compression ==> most info bits in least number of communicated bits.

Suppose n different "messages" to send, $n = 2^k$. Maximum entropy \Rightarrow equally likely: Prob(message-i) = (1/n) for any message-i.

Expected information per message is,

Sum[- (1/n) $\log[1/n]$ = - n (1/n $\log[1/n]$) = -1 $\log[2^{\wedge} - k]$ = -1 (-k) = k bits per message. If we use a k-bit code for our messages, we will be 100% compressed. (k-bit integers? Are they equally likely?)

Is that the only code that works? Change code to have fixed number of bits?

How'd we do?
\nAny #bits sent,
\nusing this code.
\n
$$
Re\theta_1
$$
 good!
\n $2 + (0.4)2 + (0.2)2 + (0.3)2$
\n $2 + 0.8 + 0.4 + 0.5 = 1.9$
\n $6i$ rate through channel = 1.9 bits per message

Huffman Algorithm Code: guaranteed to minimize bit rate.

Are there other codes? YES. Are they more compressed? NO.

Is there anything else we can try? Pairs of messages?

Run Length Encoding

File is series of alternating runs of 0s and 1s.

Keep only length of each run.

file of 51 bits

00000001111111000 00010100000000111 11111111100000000

 \rightarrow 7, 7, 6, 1, 1, 1, 8, 13, 8

9 integers. 10 digits. 9 commas?

How many bits per digit? Lets say 4. How many bits per comma? 4 also?

 ====> 76 bits Hmmmm.

 $1 = black$ $0 = whit$

 $-5000, 5000$

9 characters @ 4 bits ===> 36 bits, Wow! Lossless compression.

Hey, hold on there. What's Shannon's H?

\nProb(0) = Prob(1) =
$$
Y_2
$$
 -H = $(\frac{1}{a})log(\frac{1}{2}) + (\frac{1}{2})log(\frac{1}{2})$

\nProb({0}^{5,000}) = Prob({1}^{5,000}) = $\frac{1}{a}$

\nH = 1 bit per image bit?

\nH = 1 bit per $\frac{1}{a}$ entire image?

H assumes independence between messages. Here, lots of dependence. Also, not enough messages.

$$
\{a, b, c, d\} \xrightarrow{codeed} \{0, \Delta, 2\Delta, 3\Delta\}
$$

How many bits per message? 1 bit?
How fast can you send changes in voltage?
from switching creates noise.

Error Detection/Correction

"message" could be a bit, a string of bits, a character, a page of characters, ...

$$
\begin{array}{ccc}\n\text{WESSAGE} & \longrightarrow & \text{Communicalión} \\
\text{channel} & \longrightarrow & \text{WASSAGE} \\
\text{Wessage coded in 1 bit} & & & \\
\end{array}
$$

$$
"1" \rightarrow
$$
 encode \rightarrow 1 \rightarrow *channel* \rightarrow 0 \rightarrow *decode* \rightarrow "0" *not*

2-bit encoding
\n"1"
$$
\rightarrow
$$
 encode \rightarrow 11 \rightarrow *channel* \rightarrow 10 \rightarrow *decode* \rightarrow "Error"

Code words: 00 and 11 --- codes for "0" and "1" Code words: 10 and 01 --- signals a 1-bit error (odd parity) k-bit messages w/ 1 parity bit --- detects 1-bit errors

What if 2-bit error?

Hamming Distance == number of hypercube edges

message code "0"
"1" **111**

Distance between code words == 3

1-bit error ===> distance == 1

1-bit error CORRECTED :-)

2-bit error not detected :-(

Select code words at distance > 3?

rrar.

detectable

1-bit Correction, 2-bit Detection

Code Words: "0" ===> 0000 "1" ===> 1111

no error, or #errors > 2

How many bits are needed? Depends on noise: Shannon Noisy Coding Theorem.

Can you think of a scheme like the paritybit scheme that uses as few bits as possible? (See Reed-Solomon codes, for instance.)

More bits, higher error probability?

What's the probability of more than 2 bit errors?

7 bits per code word:

 4 data bits 3 parity bit code word = $d_1 d_2 d_3 d_4$ $P_1 P_2 P_3$ P_{1} $P_1 = par_1 + g(d_1 d_2 d_4)$
 $P_2 = par_1 + g(d_1 d_3 d_4)$
 $P_3 = par_1 + g(d_2 d_3 d_4)$ d_{2} \overline{d}_1 'du \overline{d}_3 P_{3} P_{2}

Guaranteed min. distance between code words is 3.

1-bit error: can detect and correct

2-bit error: cannot detect

What can we do about 2-bit errors? Add another parity bit.

$$
P_y = \rho a r i t y (d_1 d_2 d_3 d_4 p_1 p_2 p_3)
$$

Code word = $d_1 d_2 d_3 d_4 p_1 p_2 p_3 p_4$

1-bit error: detect + correct

2-bit error: detect

Hamming 7,4 code: Find distances to all other code words from 0000000. GREEN-PARITY: Bits[3, 2, 0] BLUE-PARITY: Bits[3, 1, 0] RED-PARITY: Bits[2, 1, 0]

 $distance = 3$

distance = 4

distance = 7

Other encodings

 $who's$ on first?

ASCII Character

ASCII (See back cover of PP)

(see "od" in unix)

