
CODING and INFORMATION
We need encodings for data.

P(Hit 1st) = 1/16

P(Hit 2nd) = P(Hit 2nd | Miss 1st) P(Miss 1st) = (1/15) (15/16) = 1/16

P(Hit 3rd) = (1/14) * P(Miss 2nd and 1st) = (1/14) (14/15) (15/16) = 1/16

E(n) = 1*(1/16) + 2*(1/16) + ... + 15*(1/16) + 15(1/16) = (1+2+3+...+15+15) / 16 ~ 8 1/2

The Info Game

--- Knower knows where ball is.

--- Asker wants to know where it is.

--- Only ask YES/NO questions.

ARE ALL questions equally informative?

--- What's the MIN number of questions?
 --- average case?
 --- worst case?
 --- best case?

--- Is there a good series of questions?

--- How much information does an answer give?

P(Hit 1st) = 1/2 (1/2 the boxes eliminated, 8 boxes left)
P(Hit 2nd) = 1/2 (1/2 the remaining boxes eliminated, 4 boxes left)
P(Hit 3rd) = 1/2 (1/2 the remaining boxes eliminated, 2 boxes left)
P(Hit 4th) = 1/2 (1 box left, we know the answer)

Game: Darts Info

Throw dart ====> uniform probability
Set divider so that 1/4 of area is on left side.

Ask, "Dart on Left side?"

Expected number of bits of info per question?

Let's see what happens if we move divider far to left.

How about sending actual bits?

There are 16 boxes, label each w/ 4 bits.

Ordering of boxes?
Which bit comes first?
...

4 bits sent, info is 4 bits.

Expected (Avg.) bits of
information, per message

Shared Context:
 Pool of Messages
 Encoding/Decoding Method

Suppose our pool of messages is { a, b, c, d }.

Suppose the probabilities of sending/receiving are,

 Prob(a) == 0.1 Prob(b) == 0.4 Prob(c) == 0.2 Prob(d) == 0.3

Two questions:

1. What is the average information bit rate?

2. How can we encode messages to approximate that minimum bit rate?

Shannon Information Theory is also called

"Shannon Coding Theory"
"Shannon Minimum Compression Theory"

We are sending more bits than information content, but we are very close.

MIN-Length code ==> MAX compression ==> most info bits in least number of communicated bits.

Suppose n different "messages" to send, n = 2^k.

Maximum entropy => equally likely: Prob(message-i) = (1/n) for any message-i.

Expected information per message is,

 Sum[- (1/n) log[1/n]] = - n (1/n log[1/n]) = -1 log[2^-k] = -1 (-k) = k bits per message. If we

use a k-bit code for our messages, we will be 100% compressed. (k-bit integers? Are they equally likely?)

Avg. #bits sent,
using our code.

 000 a 0.1

 001 c 0.2

 01 b 0.3

 1 d 0.4

Can you decode
messages?

What if receive 5
messages?

Where does one
message begin and
end?

Avg. #bits sent,
using this code.

Is that the only code that works? Change code to have fixed number of bits?

 00 a 0.1

 01 b 0.4

 10 c 0.2

 11 d 0.3

Huffman Algorithm Code: guaranteed to minimize bit rate.

Are there other codes? YES. Are they more compressed? NO.

Is there anything else we can try? Pairs of messages?

What happens as the
number of chars goes up?

00000001111111000
00010100000000111
11111111100000000

9 integers.
10 digits.
9 commas?

How many bits per digit? Lets say 4.
How many bits per comma? 4 also?

 ====> 76 bits Hmmmm.

9 characters @ 4 bits ===> 36 bits, Wow! Lossless compression.

File is series of alternating runs of
0s and 1s.

Keep only length of each run.

H assumes independence between
messages. Here, lots of dependence.
Also, not enough messages.

"message" could be a bit, a string of bits, a
character, a page of characters, ...

Code words: 00 and 11 --- codes for "0" and "1"
Code words: 10 and 01 --- signals a 1-bit error (odd parity)
k-bit messages w/ 1 parity bit --- detects 1-bit errors

What if 2-bit error?

Hamming Distance == number of hypercube edges

message code
 "0" 000
 "1" 111

Distance between code words == 3

1-bit error ===> distance == 1

1-bit error CORRECTED :-)

2-bit error not detected :-(

Select code words at distance > 3?

"MESSAGE" "MASSAGE"

"1" "0"

"1" "Error"

1-bit Correction, 2-bit Detection

Code Words:
 "0" ===> 0000
 "1" ===> 1111

no error, or #errors > 2

How many bits are needed?
Depends on noise:
Shannon Noisy Coding Theorem.

Can you think of a scheme like the parity-
bit scheme that uses as few bits as
possible? (See Reed-Solomon codes, for
instance.)

More bits, higher error probability?

0000

0001

0010

0100

1000

0011

0101

1001

0110

1010

1100

0111

1011

1101

1110

1111

What's the probability of more than 2 bit errors?

Guaranteed min. distance between
code words is 3.

1-bit error: can detect and correct

2-bit error: cannot detect

What can we do about 2-bit errors? Add another parity bit.

1-bit error: detect + correct

2-bit error: detect

Hamming (7, 4) Code (Single-Error Detection, Single-Error Correction)

7 bits per code word:

 4 data bits
 3 parity bit

Hamming 7,4 code:
Find distances to all other code words from 0000000.
GREEN-PARITY: Bits[3, 2, 0]
BLUE-PARITY: Bits[3, 1, 0]
RED-PARITY: Bits[2, 1, 0]

ASCII (See back cover of PP)

HEX CODE MEANING Printable?
 00 NUL no
 01 SOH no

 20 space yes

 30 "0" yes
 31 "1" yes

 41 "A" yes
 42 "B" yes

 61 "a" yes
 62 "b" yes

 7A "z" yes

 (other stuff, non-standard)

What to Print Starting Memory Address What is displayed (left-to-right)

4-byte number (in hex notation) 0 6D412F32

two 2-byte numbers (in hex) 0 2F32 6D41

four 1-byte numbers (in hex) 0 32 2F 41 6D

one 4-byte string 0 2 / A m

(see "od" in unix)

three 8-bit numbers

24-bits per pixel

1024 X 1024 pixels

===> 1 M x 3B
 == 3 MB file

ASCII Character
h32 ===> '2'
h2F ===> '/'
h41 ===> 'A'
h6D ===> 'm'

Compression

1. Filtering:

 Eliminate cos(10 t) term

1. Coding

 [(2, 3) ; (5, 2)]

CODEC coder/decoder

Convert from/to sound/picture samples

