
FSM has input/output, but from/to where?

(1) Other FSMs

(2) Feedback loops

"Computers": Mentally Split State

 Control STATE and Data STATE
 "control" state elements "data" state elements.
 next-state function data operation functions

Finite State Machine Implementation

Build TMs ===> Build FSMs

Symbol sets {a, b, c, d} ===> sets of bit strings { 00, 01, 10, 11}

State sets {state-W, state-X, state-Y, state-Z} ===> {00, 01, 10, 11}

We need:
 State Elements
 Boolean Functions (Next-State, Output)

BUILD a State element that does not cause feedback problems: D-FF

We have an S-R latch:

(S, R) == (0, 0) : Q is stable
(S, R) == (1, 0) : Q == 1
(S, R) == (0, 1) : Q == 0

We need to isolate its inputs:
 GATING

E == 0 : Q is stable

E == 1: Q can change

We need to prevent feedback from
changing FSM state until we are ready.

A D-latch acts like a wire when E == 1.

State changes continually w/o control.

1-bit input:

E == 0: Q = D
E == 1: Q is stable

"D-latch w/ enable"

Current state Q == 0. Next state = 1. Latches stable.

Current state Q == 0. Right latch propagates 1.

Control if D-FF will be written.

Add a write-enable.

we == 1: D propagates to input
 state changes

we == 0: Q propagates to input
 state is stable

2-Phase Clocking

Independent signals for each
latch's enable.

On breadboard:
connect Es to different switches.

NO FEEDBACK path from Q to D?

Can use D-latch instead.

Current state Q == 0. Right latch stable.

Current state Q == 1. Left latch propagates 1.
Feedback may change D, but right latch is stable.

State Q changed when left E when from 0 to 1.

Positive Edge-Triggered D FlipFlop

State Q changes when
 clock makes 0-1 transition

Next state sampled on clock 1-0
transition

k-bit input DECODER

Generates all 2^k minterms.

Exactly one ouput == 1

PLA (Programmable Logic Array): OR'ing minterms.

Share logic to implement multiple functions.

Programmable:
 minterm lines can be "blown" to disconnect them:
 select function's minterms.

Exactly one input
steered to output

FSM functions as ROM

 i input bits (2^i different inputs)

 n state bits (2^n different states)

 (2^i) X (2^n) combinations
 ===> 2^(i+n) words in ROM
 i+n address bits

ROM word == (next-state, output)

 output for two functions

ANY FSM can be built:

 ROM + STATE

One ROM word per
(STATE, INPUT) combination

BUT, very big?

SMALLER?

One word per state (Moore Machine)?
Next-state function outside of ROM?

We can list all ROMs ===> list all FSMs ==> all TMs

ROM
address content
 00 00
 01 11
 10 11
 11 00

Concatenate ROM content: ==> 00111100

Each is an integer (make unique, no leading 0s)

