| Boolean Equivalence                                                                                                                      |                                                                                                                                                            | are these the same?                                                                                                |
|------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------|
| A B C (A · B) · C   0 0 0   0 0 1   0 0 1   0 1 0   0 1 1   1 0 1   1 0 1   1 1 1                                                        | A B C $A \cdot (B \cdot C)$ 0 0 0 0   0 0 1 0   0 1 0 7   0 1 1 7   1 0 1 1   1 0 1 1   1 1 0 1   1 1 1 1                                                  | Do they have exactly<br>the same output values<br>for exactly the same<br>input values? Check<br>ALL input values. |
| If so, equivale<br>Basic Algebraic Pro<br>equivalent functions                                                                           | $p_{n} \neq (A \cdot B) \cdot C = A \cdot (B \cdot B)$                                                                                                     | C)<br>able.                                                                                                        |
| logical constant = TRUE<br>for all inputs.<br>$1 \cdot P = P$ prod<br>$0 \cdot P = 0$<br>$P \cdot P = P$ prod<br>}                       | $\begin{cases} \frac{P \mid 1 \cdot P}{0 \mid 0} = \frac{P \mid P}{0 \mid 1} \\ \frac{P \mid P \cdot P}{0 \mid 0} = \frac{P \mid P}{0 \mid 0} \end{cases}$ | $\left[\frac{P}{0}\right]$                                                                                         |
| $P \cdot \overline{P} = 0  \text{proof} \begin{cases} \\ A \cdot B = B \cdot A \\ (A \cdot B) \cdot C = A \cdot (B \cdot C) \end{cases}$ | $\frac{P   P \cdot \overline{P}}{0   0 } $                                                                                                                 |                                                                                                                    |

Handy tricks: DeMorgan's Laws and Duality (Aside: can you prove Duality?) (1) prove algebraic properties or do algebraic manipulations, (2) convert one type of logic gate to another.



Can We Build ANY k-input function? YES ===> OR k-input minterm functions.

| Α                               | В                               | С                               | ſ                          |   | ٨    | Ð                               | 0   | 1 <i>m</i> .                              |                  | ۸   | D                                    | 0                                    | 1 1/2-                                                    |       | ٨                               | 0                                    | 0                                    | • <i>W</i> 1.                                |
|---------------------------------|---------------------------------|---------------------------------|----------------------------|---|------|---------------------------------|-----|-------------------------------------------|------------------|-----|--------------------------------------|--------------------------------------|-----------------------------------------------------------|-------|---------------------------------|--------------------------------------|--------------------------------------|----------------------------------------------|
| 0<br>0<br>0<br>0<br>1<br>1<br>1 | 0<br>0<br>1<br>1<br>0<br>0<br>1 | 0<br>1<br>0<br>1<br>0<br>1<br>0 | 1<br>0<br>1<br>0<br>0<br>1 | _ |      | B<br>0<br>1<br>1<br>0<br>0<br>1 |     | 1<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0 | +                |     | B<br>0<br>1<br>1<br>0<br>0<br>1<br>1 | C<br>1<br>0<br>1<br>0<br>1<br>0<br>1 | <i>III</i> 3<br>0<br>0<br>0<br>1<br>0<br>0<br>0<br>0<br>0 | +     | A<br>0<br>0<br>0<br>1<br>1<br>1 | B<br>0<br>1<br>1<br>0<br>0<br>1<br>1 | C<br>0<br>1<br>0<br>1<br>0<br>1<br>0 | 1116<br>0<br>0<br>0<br>0<br>0<br>0<br>1<br>0 |
| 1                               | l                               | l                               | 10                         | f | '(A) | , B,                            | C ) | = 1                                       | M <sub>0</sub> ( | A,B | ,c)                                  | + 4                                  | M3(4                                                      | A,B,C | ) -                             | + Y                                  | $\Lambda_{L}(A$                      | A,B,C                                        |

Actually, we ONLY know how to build 2-input functions (NAND, NOR) and NOT (AND and OR). PROVE that OR and AND are associative: then we can use 2-input gates.

## MAXTERMS

We found a complete orthogonal set of functions, minterms.

Are there other complete orthogonal sets? YES.



Maxterms are also a complete orthogonal set.

**OR-AND Tree** 

AND-OR and OR-AND Trees can express any function:

====> { AND, OR, NOT } is a complete set of logical primitives



Karnaugh Maps are truth tables ===> See simpler logic. Similar to extracting minterms, but not orthogonal.

Can be done algebraically, but usually harder.

Is there a general procedure for minimizing circuits? (Is it computable?)



Find a collection of terms that:

- 1. covers all ones
- 2. has the fewest terms, each term covers as many 1s as possible

**General Algorithm:** 

Quine-McClusky