L ° We need functions: next-state and output.
o 3 1 C We can use {0,1} for both states and symbols ===> Boolean functions.

SET == Collection of Objects E.g. S1={A,B} S2 = {1,3,5}

RELATION (binary) == set of pairs

av@ A= {1,A}, {3,A}, {5,A},
g {1, B}, {5,B}
_ne !

RELATION (ternary) == set of triples E.g.S3={x,y}

R == { {A,1,X}, {B= 35 y} }

RELATION (k-ary) == set of k-tuples
elements are k-gons
with vertices from k sets

'GVN(:\TOY\ f:81 ===> S2 f "maps" elements of S1 to elements of S2
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© (D) [M=B f@=C, f@)=A O/\:g f=8, jm=c
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S1 X S2, "Set Cross Product"
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S; % 82. Wduct, all possible k-tuples



Roolean variable xin{0,1} 0="FALSE" 1 ="TRUE"

N
Roolean 'F\WC jon 7[3 g 0,1% — g 0,13 f maps Boolean n-tuples to {0, 1}
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What are the simplest functions we can imagine?

Can we build arbitrary functions?

u.nwrg 'ooo,oem -pux\é‘hém: How ‘mma\c WB'Hlerﬂ?

X X Are any of these functions
0 0 _ |

interesting?
1 1

boring?
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How many binary Boolean functions are there? Which have names?
X Y] X Y] X Y] L3N | X Y] XJ] X Y] X1 ALL Possible
000 000 00]0 000 00 00 00 00 output vectors:
0110 0110 o01|0 0110 0 01 01 01
1010 10]0 10|14 10[1 10 10 10 190 0000
0010
X Y| X Y| X Y| X Y| 2 Y| XJ] X Y| X 9]
00 00 00 00 00 00 001 O0O[l1 1110
01 01 01 01 01 01 0111 01|14 1111
10 10 10 10 10 10 1011 10|19
11 11 11 11 11 11 1110 1114 274 = 16




H sus ng A- &Y Pumdions ane thoy ?
/ How many ways to form this column?

%%(1) [0,0,0,0,0,0,00 <— O .

% 11 (1) [0,0,00,0,001] < 1 oﬁznt(?'?slP 1)mlry
11 % C1) [0,0,0000,1,0] < 2 == 218 functions
110 . == 2A(2A3)

111 [1,1,1,1,1,1,1,0]

g How many k-ary functions?
[1,1,1,1,1,11] <«— 2 -1

2A(21K)

Back to our task:

. . . We need
Build any arbitrary boolean function. Why?

--- arbitrary next-state functions

uhat we aan build, so far

1> > -
NOR NAND j}D"_ AND

Can we build EVERY

(1) k-input, n-output boolean function? (Seems hard.)
(2) 2-input, boolean function? (Try something easier?)
(3) 2-input function that outputs exaclty one 17?

The last one seems easiest.
Maybe we should explore Boolean functions a bit more first.



| T (XORY) == TRUE
Pro';:;;h ons exactly when X Y OR
L‘°3"c’a'\ (NOT(X) AND Y) == TRUE /\ % %) O
Céh\r\et-\' wes (X AND NOT(Y)) == TRUE ~— 1 O 1
(X AND Y) == TRUE —_ 1 1 1
X ="ltis raining" Y ="My hat is lost" ‘ +'
(X +Y) is TRUE exactly when A rfou‘; M {Af;( '40* ”(’”
wnivese
( ("Itis raining" is FALSE) AND ("My hat is lost" is TRUE) ) L Sla 87%7 ¢ FJ
w elhey Ir 14
( ("It is raining" is TRUE) AND ("My hat is lost" is FALSE) ) J( 4 . ue oz
o . . wéen téd%%c,oﬁt,
( ("It is raining" is TRUE) AND "(My hat is lost" is TRUE) )

AND This /fmd‘m« 7} MPZZ:
(X AND Y) == TRUE MQ e 1 i sz«j
exactly when

("It is raining" is TRUE) AND ("My hat is lost" is TRUE)

i

Thoe is ol 1o, 1 dlile o the wninmce such thet
AND(X,w:'I ——9(9(:1 i jz’l)

-~ oo O

We can build this function:
4
y 1T Ab ()

Are there other special functions like AND?

Can we build them easily?

Can we use them to build other, more complex functions?



Function Composition

chained mapping ,S;L—'ﬁ; i>’_§'3
i some map g f $IS'3

¥
1. Use composition to build a function from other functions.
Eg. fay = h /g(x))
X NOT(X) X f(X) == NOT( NOT(X) )
0 1 o o
1 0 1 1

2. Can we find a set of functions we can use to build any other function?

ITSPCC"4, Binarj 'Pvﬂcfl'\'or\s\
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XM Xy m X9 " X9 M
00 |1 0010 00 0010
0110 01114 01 0110
1010 1010 10 1010
1110 1110 1 1111
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Binary Minterms

1. These 4 functions are orthogonal: They do not share any rows with a 1 output.
2. They are complete: Between them they cover all possible rows with a 1 output.

Can we combine them to form any other binary function?



Can we Compose simple functions.

Harmonic Analqs]s

Can we Decompose to simple functions?

23,1/ 2y M x 3 My
000 0 0 00 [0 00 0
1010 0 0 100 1010
1111 0 1 1110 11 |1

is TRUE exactly when
.]C = M’ + Mg f y

m: is TRUE OR ms is TRUE

mi: and ms3 are never 1 at the same time,
they are orthogonal.

The set { mo, mi1,m:z,ms}is a complete set of orthogonal functions, binary minterms.
ANY binary function can be expressed as a sum of binary minterms.

We now can build any binary (2-bit input) function.

k- axy $on c"l'fons

Does this extend to k-bit input functions? YES.

a row 0% Guth Tx/“e &n,odL valves
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What sort of functions are these minterms?

Can we express Mo? Mo is TRUE if and only if (A is FALSE) AND (B is FALSE) AND (C is FALSE)

AB C |M
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Can we build f? YES, it consists of an OR of minterms.
Can we build minterms? YES, each consists of ANDs and NOTs.
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In general, We can build
ANY k-input function:

A tree of NOTs, ANDs, and ORs.
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An AND-OR Tree.

We can build ANY Boolean function.

What if k-bit output?

Each output bit is a boolean function.

whaf ahovt 57""”’5? S=fa,bc,d} = foo, 010,11}

Encode symbols as bit strings

What about functions? Maps from symbols to symbols?

: —
70 5 VSJ Each bit of output string is a boolean function.

£ F %
0000 Ffmr=a 00 [0 00| 0
01|11 fey=d — 911 01| 1
10101 feo=5b 1010 10| 1







