
We need functions: next-state and output.
We can use {0,1} for both states and symbols  ===> Boolean functions.

S1 = { 1, 2, 3 }
S2 = { A, B, C, D }

  f  = {  (1,B),  (2,C),  (3,A)  }

  f (1) = B,   f (2) = C,   f (3) = A

S1 X S2, "Set Cross Product"
Set of All Possible Pairs

SET  == Collection of Objects

RELATION (binary) == set of pairs     

R  =  {   
             {1, A},   {3, A},   {5, A},
             {1, B},   {5, B}
          }

E.g.   S1 = { A, B }       S2  =  { 1, 3, 5 }

RELATION (ternary)  == set of triples           E.g. S3 = { x, y }

R  ==  {   {A, 1, x},  {B, 3, y}  }

RELATION (k-ary) == set of k-tuples
elements are k-gons
with vertices from k sets

 f : S1  ===>  S2          f  "maps" elements of S1 to elements of S2

 f (1) = B,   f (1) = C

k-way cross product, all possible k-tuples



What are the simplest functions we can imagine?

Can we build arbitrary functions?

 f  maps Boolean n-tuples  to  {0, 1}

 x in { 0, 1 }        0 = "FALSE"    1  = "TRUE"

Are any of these functions

   interesting?

    boring?

How many binary Boolean functions are there?       Which have names?

ALL Possible 
output vectors:

0000
0001
0010
  ...
1110
1111

2^4 = 16



How many ways to form this column?

Can we build EVERY

(1) k-input, n-output boolean function?    (Seems hard.)

(2) 2-input, boolean function?    (Try something easier?)

(3) 2-input function that outputs exaclty one 1?

The last one seems easiest.
Maybe we should explore Boolean functions a bit more first.

Back to our task:

Build any arbitrary boolean function.  Why?

Build a computer (UTM)   ===> Build FSM 

We need

  ---  arbitrary next-state functions
  ---  arbitrary output functions

[0,0,0,0,0,0,0,0]

[0,0,0,0,0,0,0,1]

[0,0,0,0,0,0,1,0]

         ...
[1,1,1,1,1,1,1,0]

[1,1,1,1,1,1,1,1]

Counting in binary
0  to  (2^8 - 1)

    ==  2^8  functions

    ==  2^(2^3)

How many k-ary functions?

         2^(2^k) 

NOR NAND
NOT

OR

AND



(X OR Y) ==  TRUE
exactly when

(NOT(X) AND Y)   ==  TRUE

(X AND NOT(Y))   ==   TRUE

(X AND Y)            ==    TRUE

  X = "It is raining"   Y = "My hat is lost"

                     (X + Y)  is  TRUE  exactly when

( ( "It is raining" is FALSE) AND ("My hat is lost" is TRUE) )

( ("It is raining" is TRUE) AND ("My hat is lost" is FALSE) )

( ("It is raining" is TRUE) AND "(My hat is lost" is TRUE) )

(X AND Y)  ==  TRUE 
exactly when

   ("It is raining" is TRUE) AND ("My hat is lost" is TRUE) 

We can build this function:

Are there other special functions like AND?

Can we build them easily?

Can we use them to build other, more complex functions?



Function Composition

  X      NOT( X ) 
-----     ----------
  0          1
  1          0

X              f (X)   ==    NOT(  NOT(X)  )
---     ---------------
0               0
1               1

2. Can we find a set of functions we can use to build any other function?

1. Use composition to build a function from other functions.

E.g.,

Binary Minterms

1. These 4 functions are orthogonal:  They do not share any rows with a 1 output.

2. They are complete: Between them they cover all possible rows with a 1 output.

Can we combine them to form any other binary function?



Can we Compose simple functions.
 
Can we Decompose to simple functions?

The set { m0 , m1 , m2 , m3 } is a complete set of orthogonal functions, binary minterms.

ANY binary function can be expressed as a sum of binary minterms.

We now can build any binary (2-bit input) function.

 f  is TRUE exactly when

     m1  is TRUE       OR     m3  is TRUE

m1  and  m3  are never 1 at the same time,

they are orthogonal.

Does this extend to k-bit input functions?   YES.

X4   X3    X2    X1    X0
 0     1      0      1       1



What sort of functions are these minterms?

Can we express M0?  M0 is TRUE if and only if (A is FALSE) AND (B is FALSE) AND (C is FALSE)

Yes, that is an 
equivalent 
expression for M0.

Can we build f ?   YES, it consists of an OR of minterms.
Can we build minterms?  YES, each consists of ANDs and NOTs.

In general, We can build 
ANY k-input function:

A tree of NOTs, ANDs, and ORs.



An AND-OR Tree.

We can build ANY Boolean function.

What if k-bit output?

Each output bit is a boolean function.

Encode symbols as bit strings

What about functions?     Maps from symbols to symbols?

Each bit of output string is a boolean function.




