

We need functions: next-state and output.

We can use $\{0,1\}$ for both states and symbols ===> Boolean functions.

SET == Collection of Objects

E.g.
$$S1 = \{A, B\}$$
 $S2 = \{1, 3, 5\}$

RELATION (binary) == set of pairs

$$\begin{array}{c|c} & & & R = \{ \\ & & & \\ \hline 3 \\ \hline 3 \\ \hline 5 \\ \end{array} \\ \end{array} \\ \begin{array}{c} R = \{ \\ \{1, A\}, \{3, A\}, \{5, A\}, \\ \{1, B\}, \{5, B\} \\ \end{array} \\ \end{array}$$

RELATION (ternary) == set of triples

$$R == \{ \{A, 1, x\}, \{B, 3, y\} \}$$

RELATION (k-ary) == set of k-tuples elements are k-gons with vertices from k sets

 $f: S1 \implies S2$ f "maps" elements of S1 to elements of S2

Function

S1 = { 1, 2, 3 } S2 = { A, B, C, D } $f = \{ (1,B), (2,C), (3,A) \}$ f(1) = B, f(2) = C, f(3) = A

$$f(1) = \mathbf{B}, f(1) = \mathbf{C}$$

k-way cross product, all possible k-tuples

How many binary Boolean functions are there?

Which have names?

Back to our task:

Build any arbitrary boolean function. Why?

Build a computer (UTM) ===> Build FSM

We need

--- arbitrary next-state functions

--- arbitrary output functions

what we can build, so far

Can we build EVERY

(1) **k-input**, **n-output** boolean function? (Seems hard.)

NAND

(2) **2-input**, **boolean** function? (Try something easier?)

(3) 2-input function that outputs exaclty one 1?

The last one seems easiest. Maybe we should explore Boolean functions a bit more first.

(X + Y) is TRUE exactly when
(("It is raining" is FALSE) AND ("My hat is lost" is TRUE))
(("It is raining" is TRUE) AND ("My hat is lost" is FALSE))
(("It is raining" is TRUE) AND "(My hat is lost" is TRUE))

a row in table identifies a state of the universe. f is either True of False when that is the state

This function is simple: There is only 1 row, 1 state of the universe such that AND $(x, y) = 1 \longrightarrow (x = 1 \text{ and } y = 1)$

We can build this function:

x y z AND(x,y)

Are there other special functions like AND?

Can we build them easily?

Can we use them to build other, more complex functions?

2. Can we find a set of functions we can use to build any other function?

Binary Minterms

These 4 functions are orthogonal: They do not share any rows with a 1 output.
 They are complete: Between them they cover all possible rows with a 1 output.
 Can we combine them to form any other binary function?

Harmonic Analysis

Can we **Compose** simple functions.

Can we Decompose to simple functions?

The set { m_0 , m_1 , m_2 , m_3 } is a complete set of orthogonal functions, binary minterms.

ANY binary function can be expressed as a sum of binary minterms.

We now can build any binary (2-bit input) function.

k-ary functions
Does this extend to k-bit input functions? YES.

a row of turth table input values
is a logical statement

$$\overline{\chi_{4}} \cdot \chi_{3} \cdot \overline{\chi_{2}} \cdot \chi_{1} \cdot \chi_{0}$$

as a function it is true in exactly
one case \rightarrow a minterm function

What sort of functions are these minterms?

Can we express Mo? Mo is TRUE if and only if (A is FALSE) AND (B is FALSE) AND (C is FALSE)

Α	В	С	<i>m₀</i>	$\mathcal{M}_{A} = \overline{A} \overline{B} \overline{C} 2$	AB	С	ĀĒĊ	,
0 0 0 1 1 1	0 0 1 1 0 0 1 1	0 1 0 1 0 1 0	1 0 0 0 0 0 0 0	check that $M_3 = \overline{A} \cdot B \cdot C$ $M_6 = A \cdot B \cdot \overline{C}$	0 0 0 0 0 1 0 1 1 0 1 0 1 1 1 1	0 1 0 1 0 1 0	1 0 0 0 0 0 0 0	e e
			So,	$f = \overline{A} \overline{B} \overline{C} + \overline{A} \cdot B \cdot C +$	► A·B	. <u>ر</u>		

Yes, that is an equivalent expression for M0.

Can we **build** f? YES, it consists of an OR of minterms. Can we **build minterms**? YES, each consists of ANDs and NOTs.

In general, **We can build ANY k-input function**:

A tree of NOTs, ANDs, and ORs.

An AND-OR Tree.

We can build ANY Boolean function.

What if k-bit output?

Each output bit is a boolean function.

What about symbols?
$$S = \{a, b, c, d\} \rightarrow \{00, 01, 10, 11\}$$

Encode symbols as bit strings

What about functions? Maps from symbols to symbols?

 $f: S \rightarrow S$ Each bit of output string is a boolean function.