TM Twplementdion

NPT > OvTPUT
; . Iemeﬁl‘ 7 State - :ﬁi
FSM mp STATE |

Elemanks

To build any TM, WE NEED:

--- (1.) FSM:
state
(output and next-state)

--- (2.) Tape: methods to R/W symbols, we'll use registers (RAM).

--- (3.) Symbol set = a set of fixed length bit strings, e.g.,
S ={0,1} (2 symbols)
S ={00, 01, 10, 11} (4 symbols)
S = {000, 001, 010, 011, 100, 101, 110, 111} (8 symbols)

Build €SM || even-odd parity

OJUT: {di}es}X{Syhl)o’s} —> {thLoL}
ney -‘;H'e.f {da‘es}x {sy nln,s} — {S’Hu}

ouT OouT
A,0) ===> 0 (0,0) ===>0
ﬁA,1§ 1 hede (0,1) === 1
(B,0) ===> 1 (1,0) ===>1
ES)MLols} {o 1} (B,1) ===> 0 (1,1) ===>10
14
i ddcs% {A B% e“co {0 1% next_state next_state
(A,0) ===> A J (0,0) ===> 0
(A1) ===>B fheode (1) —=o> 1
. . . (B,0) ===>B T 2 (1,0) ===> 1
Two things to build to implement a FSM: (B,1) ===> A (1,1) ===> 0
1. Boolean functions current sTATE] j
2. State elements symbol redd ot s tibe

Our Computer/Simulator is a FSM.
Our simulated machines are FSMs, too.

Turing Complete/Universal (can simulate any TM)

we need:

--- a Language to describe any TM,

--- a Simulator that understands that language.

We need to describe arbitrary TMs so that our
computer/simulator can execute/simulate them.

We can build the machines physically.
We need a language to describe them as well.

Our description language must be able to describe:

LANGUAGE

--- RW to tape
--- Arbitrary functions (next-state, output)

uTM/ 5\'1'\0‘67\'0\' / cow\PJ"er

--- Arbitrary set of states, including regs (= vars)
--- Arbitrary set of symbols
--- Arbitrary branching (via binary trees)

A physical computer/simulator has to be able to
do only a small number of steps to
execute/simulate a program/description of some

description of
simulated TM

Mem N/

scratch pad,

™ M.

--- know M's current state (PC, vars) , S‘,' [}
--- read M's tape (LDR) S.’"'”Ia:}or mu,a+ : instruction
--- compute M's OUT function: + DA.TA PA-H'] for state 0

ADD, AND, NOT ... Coh ro"er
--- compute M's next-state function: . Req File

ADD, AND, NOT ... r‘j'd'e s a3
--- write M's tape (STR) K“J
--- change M's state PC —

PC++, JMP, BR

STR ===> new data state (vars) R

STR ===> new control state I
Description of M uses small pieces, AR
"instructions" are "executed" M

V
MDR ALl
Con‘f‘ro’ In o‘l"(
P PSR Y wrile
Simy ,ajb(' \Rsé —
FSN\ Cof\"‘(oue(' CO.l'lTﬂl JA,"'Q SIJV)GJS vars,
signals

FSM Controller uses registers (e.g., PC) to remember:
--- M's state (control + data states)

(RegFile)
--- symbols to write (RegFile)

--- step of simulation (UTM's controller's state)

--- partial steps of function evaluations (next-state, output)
data registers, PSR, on tape, ...

simulated tape,
etc.

STATE ELEMENTS
Pos. 6632_ ‘\‘r\cne)re)
F¥

IN

Peoblew

Kby bar
the door

(

STAve

Feedback loop:

state change,
NS change,

state change,
NS change, ...

Solution

State changes w/o control.

We want coordination w/
input data.

When the input is ready,
Then allow a state change.

Input has to be stable for a
minimum time.

Current state has to remain
stable to get correct next
state.

Never allow a complete cycle path.
Break path at the state element.
1. Current state = A

2. Allow NS signal B in (read/sample
state element input).

3. Then, close the barn door.
B is captured, cannot be changed
by changes in NS function output.

UV’,Old. “SWMP ,e_d v
*atchet”

Next -state

function

Let the NS out:
open the output side barn door,
C == change current state to B

NS function immediately responds with
new next-state C.

B<+8

|
' clock _/~ _O

c\ock ﬁ/—

@ NI r'\s'lvg CIOC\(= st cl\omge

Close the output side's input door.

New state B is latched.

Path is never a complete cycle.

Clo¢ __\ O
ok A= ouT '

This is what we need for implementing STATE:
a D-FF register.

Note:

We add a "write-enable" because sometimes we need to choose
whether or not the register will change its value.
So far, for FSMs, our D-FFs are always write-enabled, we==1.

DCSCCi))ing Fu«lc."'t'ov\s

Two Ways to Specify a Function f(x)

(1) (2)
Describe how to evaluate f(x) : Show a table of values of f(x):
E.g. E.g.
flx) = 2x x f(x)
(given any value x) ? 1

(for every value of x)

(B) wicrocoded Co vcoller

nest-state Y odtpet fvﬂi}lﬁhs

A-Reg == controller's current state
addresses uCode ROM
gives memory word at output

CS_)I.;{,:" ROM Word == datapath control bits
C-Reg has
(VJ controls datapath
A‘R‘ﬁ >t ADDR next-state fields of C-Reg

;[: /a C o Je Part of Controller's next-state function

Control branching (the rest of next-state function)

RO M -- 2-way, NS1 or NS2
et -- MUX.select = f (STATE, IR, ...)
VT
STO:\-Q’ o LC3 ucode branching also includes
l’ one-step, 16-way branching (DECODE).
mUX | g+ ¢-Reg
As a general FSM,
ver it looks like this,
N C- Re%,
TR] ROM
other \'M|N+s @

STATE NS
F

Advantages of ucode controller:

-- easier to change A- Reg %& in

-- easier to figure out B

-- easier to expand EN
install bigger ROM. :

Advantages of "random logic" controller:
Caveat: The C-Reg is just to make the picture
-- faster clearer, it doesn't actually exist in LC3. Instead, the
-- smaller (?) ROM's outputs go directly to control inputs.
-- distributed throughout machine

Suppose we have, 8.3.1 W\ob\g W\QCK\V\ﬁ

--- 1-bit state elements
--- 1-bit function elements

HOW do we put them together to implement a
FSM M?

We need to encode the states of M in bits.
We get boolean functions for next-state
function (and output function).

1"k°+ C“@Si“}& stk e.lemed‘s binar 9 e‘\@si“a, 2 s e.‘eme\d's
N 7 in -
encoéina
| STATE Qle Q. |
A 0 01
®. D, 8 010 3. D
C 100 L
Y R 0
k___m# encoding

sTATE Q) Qo
The next-state function as a table: A 0 0

B 01

X Fx) C 10

N\ I~
'mPf]' cwfcn" s'l':jc v\cx.l' S+&+€ “tx'l' s+a,'|"€
IN Q2 Q1 Q0 D2 D1 DO IN Q1 Q0 D1 DO
0 0 0 1 (A 0 0 1 (A
! 0o i@ o010 1 ool o1
0 0 1 0 (B) 0 1 0 (B) 0 0 1 (B) 0 1 (B)
1 0 1 0 (B) 1 0 0 (C) 1 0 1 (B) 1 0 (C)
0 100(g) (1)8(1)(? 0 1 0 (C) 1 0 (C)
1o1eee et Poree oo w

* rows that cannot be reached.

. . - * rows cannot be reached.
Xs for don't care, either 0 or 1. X is for don't care: either 0 or 1.

IF we have a universal language (able to describe any TM)
All we need to know is How To Build:
--- 1-bit state elements?

--- 1-bit functions?

