
To build any TM, WE NEED:

--- (1.) FSM:
 state
 logic functions (output and next-state)

--- (2.) Tape: methods to R/W symbols, we'll use registers (RAM).

--- (3.) Symbol set = a set of fixed length bit strings, e.g.,
 S = {0,1} (2 symbols)
 S = {00, 01, 10, 11} (4 symbols)
 S = {000, 001, 010, 011, 100, 101, 110, 111} (8 symbols)

Two things to build to implement a FSM:

1. Boolean functions

2. State elements

Our Computer/Simulator is a FSM.

Our simulated machines are FSMs, too.

 OUT
 (A, 0) ===> 0
 (A, 1) ===> 1
 (B, 0) ===> 1
 (B, 1) ===> 0

 OUT
 (0, 0) ===> 0
 (0, 1) ===> 1
 (1, 0) ===> 1
 (1, 1) ===> 0

 next_state
 (A, 0) ===> A
 (A, 1) ===> B
 (B, 0) ===> B
 (B, 1) ===> A

 next_state
 (0, 0) ===> 0
 (0, 1) ===> 1
 (1, 0) ===> 1
 (1, 1) ===> 0

Our description language must be able to describe:

--- Arbitrary set of states, including regs (= vars)
--- Arbitrary set of symbols
--- Arbitrary branching (via binary trees)
--- RW to tape
--- Arbitrary functions (next-state, output)

--- know M's current state (PC, vars)
--- read M's tape (LDR)
--- compute M's OUT function:
 ADD, AND, NOT ...
--- compute M's next-state function:
 ADD, AND, NOT ...
--- write M's tape (STR)
--- change M's state
 PC++, JMP, BR
 STR ===> new data state (vars)
 STR ===> new control state

Description of M uses small pieces,
"instructions" are "executed"

instructions
for state 0

instructions
for state 1

FSM Controller uses registers (e.g., PC) to remember:
--- M's state (control + data states)
--- symbols read (RegFile)
--- symbols to write (RegFile)
--- step of simulation (UTM's controller's state)
--- partial steps of function evaluations (next-state, output)
 data registers, PSR, on tape, ...

description of
simulated TM

Turing Complete/Universal (can simulate any TM)
we need:
--- a Language to describe any TM,
--- a Simulator that understands that language.

vars,
scratch pad,
simulated tape,
etc.

We need to describe arbitrary TMs so that our

computer/simulator can execute/simulate them.

We can build the machines physically.

We need a language to describe them as well.

A physical computer/simulator has to be able to

do only a small number of steps to

execute/simulate a program/description of some

TM M.

Feedback loop:
state change,
NS change,
state change,
NS change, ...

State changes w/o control.

We want coordination w/
input data.

When the input is ready,
Then allow a state change.

Input has to be stable for a
minimum time.

Current state has to remain
stable to get correct next
state.

Solution

Never allow a complete cycle path.

Break path at the state element.

1. Current state = A

2. Allow NS signal B in (read/sample
state element input).

3. Then, close the barn door.
B is captured, cannot be changed
by changes in NS function output.

This is what we need for implementing STATE:
a D-FF register.

(1)
 Describe how to evaluate f (x) :
 E.g.
 f (x) = 2 x

(given any value x)

Let the NS out:
open the output side barn door,
 == change current state to B

NS function immediately responds with
new next-state C.

Close the output side's input door.

New state B is latched.

Path is never a complete cycle.

Note:

We add a "write-enable" because sometimes we need to choose

whether or not the register will change its value.

So far, for FSMs, our D-FFs are always write-enabled, we==1.

(2)
 Show a table of values of f (x) :
 E.g.
 x f (x)
 ------- -------
 0 1
 1 0

(for every value of x)

Two Ways to Specify a Function f(x)

A-Reg == controller's current state
 addresses uCode ROM
 gives memory word at output

ROM Word == datapath control bits
 C-Reg has current control word
 controls datapath

next-state fields of C-Reg
 Part of Controller's next-state function

Control branching (the rest of next-state function)
 -- 2-way, NS1 or NS2

 -- MUX.select = f (STATE, IR, ...)

 LC3 ucode branching also includes

 one-step, 16-way branching (DECODE).

Advantages of ucode controller:

 -- easier to change
 -- easier to figure out
 -- easier to expand
 install bigger ROM.

Advantages of "random logic" controller:

 -- faster
 -- smaller (?)
 -- distributed throughout machine

As a general FSM,
it looks like this,

Caveat: The C-Reg is just to make the picture
clearer, it doesn't actually exist in LC3. Instead, the
ROM's outputs go directly to control inputs.

Suppose we have,
 --- 1-bit state elements
 --- 1-bit function elements

HOW do we put them together to implement a
FSM M?

We need to encode the states of M in bits.
We get boolean functions for next-state
function (and output function).

IN Q2 Q1 Q0 D2 D1 D0
-------------------------- ---------------------
0 0 0 1 (A) 0 0 1 (A)
1 0 0 1 (A) 0 1 0 (B)
0 0 1 0 (B) 0 1 0 (B)
1 0 1 0 (B) 1 0 0 (C)
0 1 0 0 (C) 1 0 0 (C)
1 1 0 0 (C) 0 0 1 (A)
* * * * X X X

* rows that cannot be reached.
X is for don't care, either 0 or 1.

IN Q1 Q0 D1 D0
---------------------- ------------
0 0 0 (A) 0 0 (A)
1 0 0 (A) 0 1 (B)
0 0 1 (B) 0 1 (B)
1 0 1 (B) 1 0 (C)
0 1 0 (C) 1 0 (C)
1 1 0 (C) 0 0 (A)
* * * X X

* rows cannot be reached.
X is for don't care: either 0 or 1.

The next-state function as a table:

IF we have a universal language (able to describe any TM)

All we need to know is How To Build:

 --- 1-bit state elements?

 --- 1-bit functions?

