
Compute: follow a fixed procedure and 
produce an answer (halt), aka, algorithm.

What can be computed? What cannot? 
What can be efficiently computed (and 
how)?

If a single question really is answerable 
"yes" or "no", then one of the machines, 
M_yes or M_no, computes the answer. We 
might not know which one is correct.

Any finite set of examples can be computed: 
just make a table and look up the answer. 
Just because you don't know how doesn't 
mean it can't be done.

Are all programs algorithms? No.

for (i = 1; i > 0; i = 1) {
    j = j+1;
}

Q. Are all TMs algorithms?

We can decode any finite set of questions 
using a fixed branching tree. For each leaf, we 
simply print the answer: A look-up table.

 ITAG
   TM

# / Y / R # / E / R # / S / R

# / N / R # / O / R

M is an algorithm solving Primality test 
for the numbers { 0, 1, ... , 15 }.



Fermat's Last Theorem

There are no solutions to,

            x^n + y^n  =  z^n

where n, x, y, and z are positive integers and n > 2.

(Proved in 1995: Frey, Ribet, 
Wiles, and Taylor.)

Given some positive integer n > 2, is there a solution to,

     x^n + y^n  =  z^n 

where x, y, and z are positive integers?

FLT( n )
    pick next ( x, y, z )
    check whether   x^n + y^n  ==  z^n
    if yes, print "there is a sol'n" ,  halt;
    else, repeat



How many questions are there? How many TMs? 

In our encoding, we used a string of 0s and 1s to represent a TM. Symbol set is {0, 1}.

--- Each TM can be identified with an integer. (There are infinitely many machines that do the same thing.)

--- Each input tape configuration can be identified with an integer.

--- Each output tape configuration can be identified with an integer.

--- A TM can be looked at as an integer function: given input, x, machine M produces integer M(x).
 ---(M might loop forever on some inputs; if so, then M is a "partial" function.)

Computable (real) numbers:
Given e, output finite number of digits 
of x so that the output is within e of x. 

ππππ is such a number.

Q. Are there incomputable reals?

Q. Can you encode an arbitrary input tape, in a 
arbitrary symbol set, using only {0, 1}? Hint, use 
unary encoding.

 (Recall, only a finite portion of tape is non-blank.)
That binary string is an integer.

unary encoding of a TM is a binary number:

  10010010110110101100101010101110011011011010100110101101101110000



How many integer functions are there?

Consider a function g( ), which we describe by saying that
 g( ) is different from all the functions in the list above. 
How? Because g( ) is,

   not the same as M0 for the first output, g(0), 
   and it is,
   not the same as M1 for the second output, g(1), 
   and it is,
    ...

--- Diagonalization:

    g(0) != M0(0)
                         g(1) != M1(1)
                                                 g(2) != M2(2)
                                                                ... (forever)

---- g( ) is different from every function in the list; so,
      g( ) is not in the list!

--- How many different ways are there to pick g()?
      g(0) is any element from N - { M0(0) }
      g(1) is any element from N - { M1(1) }
      g(2) is any element from N - { M2(2) }
    ...

     There are so many different functions, g( ), proportionally, 
that the probability of randomly picking a function from a 
bag of integer functions and having that function 
correspond to some TM is 0.

[What the heck does that really mean?]

That is,

    There are a lot of functions (more than all the positive 
integers).

    Nearly all are incomputable

Maybe it only means we don't know how to 
arrange an infinite list of TMs? We are limited 
in our own computing power?

How "numerous" is "infinity to the infinity"?

How can we know we are able to produce g() 
this way?



As long as we are building TMs, lets see how to simplify our work.
How about combining two TMs to make a new one?

skip 0's to the left, 
stop at the first 1, 
end up w/ R/W to its left.

read 1's leftward, 
until finding a 0. 
If even number of 1's, 
   add another 1 on left; 
if odd do nothing. 
Halt at left end of string. 



M3 starts in M1's start 
state.

 Every M1 state 
transistion that goes to 
M1's "HALT" state is 
instead connected to 
M2's START state.

 M3's halting state is 
M2's "HALT" state.



Lemma: 
    All TM's with x as input, either (1) HALT or (2) LOOP FOREVER.   (exercise: prove the lemma.)
 

A very special integer function: The Halting function:

    input:   integer xM                           (xM == an encoding of input x followed by an encoding of M.)

    output: "1" if xM would HALT;         (xM == M reading x as its input.)
                 "0" otherwise. 

Question:
Would xM eventually     
    halt,
or
    loop forever?

The above can encoded as a single integer. Given a UTM, we would simulate this situation by putting 
on the UTM's input tape: An encoded input tape containing x, an encoded R/W head location, an 
encoded current state (start-state initially), and an encoded rule table. Put a 1 on the left, and the 
encoded tape represents a non-zero integer:

Will this machine with this input 
halt or loop forever?

Assume:
No transitions out from a state 
defines it as a halting state.

We do not SIMULATE xM.

We have xM encoded as an integer.
Everything that is known about the 
situation is encoded above.

No state-transition rules for State-1 
make it a halting state.



 M will
 HALT

  M will
 LOOP

H will halt,
either in
    "M will HALT"
or in
    "M will LOOP"

Is there a Turing Machine, 

    H,

that computes the function,

    Halting(N)?

It only has to be "correct" for legal

    N = xM

For N not a legal xM encoding, we 
don't care which state it halts in

We can assume H will:

output a 0
when it transitions to the state
"M will HALT";

output a 1
when it transitions to the state
"M will LOOP".

Most N are not legal encodings of xM for 
some TM M and input x.

How does Halting() map in those cases?
We don't care. (Make it 0.)

Is there a mapping for every xM?

For every N?

Q. Can there be H, a TM that computes this function. Is it possible?
Asummption: Either (H exists) IS TRUE, or (H does not exist) IS TRUE.

Suppose (H exists) IS TRUE. 

Then we can build another machine, H+, using H and a "Copy" TM.



H+

    1. copies its input.
    2. acts as H would,      
        except:

  WHEN H+ reaches
   xM halts,  H+ LOOPS.

Aside, altering H to create H'

Because we assumed there is a TM, H, then,

      there must be a rule table for H.

Consider the rules for H's state labeled "halts" and "loops".

These are both halting states that cause H to stop operating.

===> For H,

     There are no rules for the states "halts" and "loops":

E.g., in contradiction, suppose this was a rule for H:

    [  state="halts", symbol="0", output="1", move="L", nextState="halts" ]

Then, H would not halt in state "halts", i.e., "halts" would not be a halting state.



We can make a new TM, H':

    1. make a copy of all H's rules

    2. Add these rules:

    [  state="halts", symbol="0", output="0", move="L", nextState="halts" ]
    [  state="halts", symbol="1", output="1", move="L", nextState="halts" ]
    [  state="halts", symbol=" " , output=" " , move="L", nextState="halts" ]

If the new machine, H', ever reaches its "halts" state, it will,

    loop forever, always going back to its "halts" state.

Aside, How To Build A TM That Halts.

To Implement a TM, we build its 

Finite State Machine

The input "IN" comes from reading 
the tape.

The output "OUT" is written to the 
tape. (Assume it also controls 
moving the R/W head.)

The "CLOCK Oscillator" produces 
the clock signal.

The output "STOP_CLOCK" is 
always 1, execept for any halting 
state, then it is 0.

Once STOP_CLOCK == 0

the machine cannot change 
state;

All outputs are 0 for that state:

nothing happens.

We could have that 
STOP_CLOCK signal turn off the 
power.



Consider putting desc(H+) on H+'s input tape. What must happen?

H+ first does exactly what Copy would do, copy its input. 
Next, H+ acts exactly as H would.

The tape is now thought of as,
     an input, x = desc(H+), followed by a 
     machine description, desc(M) = desc(H+).

H+ WILL either  (because H always halts in HALTS or LOOPS)

     (reach HALTS and then loop)  
        OR  
     (reach LOOPS and then halt).

 SUPPOSE H+ loops.

1. H+ reached HALTS.
2. Then H with input xM == desc(H+) desc(H+),
    would have halted in HALTS.
3. BUT H+ reading desc(H+) loops (our assumption).
4. Since H is correct, it would not go to HALTS.
5. H+ cannot reach HALTS, and does not loop.
6. This contradicts our assumption that H+ loops.

We assumed H exists, i.e.,  it works correctly. 
Assuming also that H+ loops leads to a contradiction.
At least one of these assumptions must be false.



SUPPOSE H+ halts.

1. H+ reached LOOPS.
2. H reading desc(H+) desc(H+) must reach LOOPS.
3. BUT desc(H+) H+ halts.
4. H is correct; so, H cannot reach LOOPS.
5. desc(H+) H+ cannot reach LOOPS.

We assumed H is correct.
Assuming also that H+ halts leads to a contradiction. 

If H exists, H+ exists, is a TM, and either halts or 
loops. (Building H+ from H was easy and resulted in a 
TM.)

But both cases ( H+ either halts or loops ) lead to 
contradictions.

The assumption that H exists must be false.

This is better than diagonalization: we have a real, 
uncomputable function. The function exists because 
every TM M either halts of loops forever, given an 
input x.

There is a function H() mapping 
       H: { xM } ===> {0, 1}
from positive integers to {0, 1}, but no TM can 
compute it. 

Build something H- that partially computes the Halting Problem?

Works for some inputs, but not others?

Works for some fixed number of inputs?

Has a lookup table?

How many machines act exactly like any given description?

How many descriptions are there?

How many other things are not Turing computable? What does this say about cognition? ...???



Hnew( x, M)

    print "loops forever"

    1. Simulate xM for one step.
    2. If  xM halted
            print "halts"
        else
            go to 1.



Formal Proof

Notation: "[halts]" means "H+ halts when reading its own description"; "[loops]" is to be read similarly; "==>" 
means, "implies", in the logical sense of material implication; "-" means logical NOT.

1. (H exists)    ==> (H+ exists (is a TM))                                                (by properties of TM)

2. (H+ exists)  ==>  [halts] OR [loops]                                                   (by properties of TM)

3. (H+ exists)  ==> -[loops] AND -[halts]                                                (demonstrated above)         

4. (H exists)  ==>  ( [halts] OR [loops] )  AND  ( -[loops] AND -[halts] )   (by 1. and 2.)

5. (H exists)  ==> ( [halts] AND -[halts] ) OR ( [loops] AND -[loops] )      (by AND/OR properties)

6. p ==> q   EQUALS  -q ==> -p                                                            (by properties of "==>")

7. -(  ( [halts] AND -[halts] ) OR ( [loops] AND -[loops] )  )  ==> -(H exists)   (by 5. and 6.)

8. -(  ( [halts] AND -[halts] ) OR ( [loops] AND -[loops] )  )                       (true by AND/OR properties)

9. -(H exists)                                                                                          (syllogism applied to 7. and 8.)


