
Algorithms and Computers

We would like to have:
    -- A simple  concept of computation/computing/computers
Why?
--- 1. When we build one, we can tell what we want: can it do what it is supposed to do?
--- 2. When we see one, we can recognize it (eg. is a QM machine a computer?)
--- 3. When we look at a complex system, we can identify its fundamental structure: abstraction.
--- 4. We can define what we mean by an algorithm (ie., TM that always halts).

BIG IDEA: Define computation (automatic procedure) Church-Turing Thesis:

Any computation can be done by 
some Turing Machine (TM).

(Efficiently?) 

Can't prove, but works so far.

Operation

1. Read one symbol
2. Depending on state and symbol,
    --- write one symbol
    --- move R/W head one cell L. or R.
    --- change state
3. Repeat, or if current state is a "halting 
state", stop operating.



0 / 0 / L

1 / 1 / L

1 / 1 / L 0 / 1 / L

0 / 0 / L

If ( current state == E ) AND
   ( current symbol == 0 )
then
   ( write symbol == 0 )
   ( move R/W head L. )
   ( new state == Halt )

On this specific input?

On any general input?

Alternate representation of FSM:

(start state = E)
(state, input)  (output, move, next state)
------------------   -------------------------------------
(E, 1)               (1, L, O)
(E, 0)               (0, L, Halt)
(O, 1)               (1, L, E)
(O, 0)               (1, L, Halt)



A "unary" encoding of the above:

00100
  1  0 11 0         11 0  1  0  11  00
  1  0  1  0          1  0  1  0 111 00
 11 0 11 0         11 0  1  0   1   00
 11 0  1  0         11 0 11 0 111 00
00

That "unary" encoding can be a binary number:

  0010010110110101100101010101110011011011010100110101101101110000

F :  { states } X { symbols }  ===> { states }

G :  { states } X { symbols }  ===> { symbols }

H :  { states } X { symbols }  ===> { L, R }

state  symbol   F = next-state
-------  ---------- | --------------
  E         0       |       Halt
  E         1       |       O
  O         0       |       Halt
  O         1       |       E
  Halt     0       |       Halt
  Halt     1       |       Halt

Fe :  { symbols }  ===> { states }

Ge :  { symbols }  ===> { symbols }

He :  { symbols }  ===> { L, R }

(We can describe these with our programming language.)



User Manual: Start with two numbers coded in unary on tape separated by a 
single blank, and RW-head positioned on rightmost 1 of righthand number. 
Machine halts with RW-head positioned at leftmost 1 of unary-coded result.

Q. Does this work for input of 0 in one or both numbers?

Q. What is the purpose of state A? State B? State in words.

What else?
With a little more thought we can build:

--- Tu-: A unary subtractor
--- Tb+: A binary adder
--- Tb-: A binary subtractor
...

BIG IDEA: Make a TM simulator (call it UTM)
--- UTM simulates any other machine A, if we put a description of A on UTM's input 
tape and layout A's input tape in a simulated tape encoding on UTM's tape.

--- Turing demonstrated one, and a way of describing machines (see below).

1.a. Pattern match A's current state w/ current-state part of rule.
1.b. If match, go to 2; otherwise, advance to next rule and go to 1.a.
2.a. Find current location of the simulated RW-head, 
       pattern match cell content with rule's input symbol.
2.b. If matched, go to 3. Otherwise, advance to next rule and go to 1.a.
3. Copy output symbol to current simulated tape cell.
4. Copy next-state symbol to current-state area.
5. Move simulated head as needed. Fix simulated tape. Go to 1.a.

Built using some basic TMs: Tcopy, Tmatch, Tshifttape, ...

1 / 1 / L
1 / 1 / L

# / 1 / L
# / # / R

1 / # / R

All possible inputs 
must be specified for 
every state. But we can 
agree that unspecified 
symbols go to "error" 
state.



 SIMULATING MACHINE (UTM)

--- Uses a FIXED SYMBOL SET
--- BUT, Can encode any size symbol set (characters, numbers, strings, images, ... )

--- Has FIXED NUMBER OF STATES,
--- BUT, simulates machines w/ any number of states.

--- Uses a BOUNDED AREA OF TAPE,
--- BUT, relocates and expands simulated tape as needed.

--- Uses PATTERN MATCHING, not states to match state or symbol codes.
    (Using states to count would limit number of simulated symbols/states possible.)

--- A universal machine with a larger symbol sets (say, binary integers), could encode
    more economically.

11 / 111 / 1

How do we describe an arbitrary M?
How many symbols does our UTM have?
How many symbols does M have? states?



Programmability and Translation

Can simulate any TM, no matter the size of its symbol set, the number of states, or the number of 
rules (UTM uses pattern matching, not counting via UTM states). Extra credit: prove.

There can be more than one UTM, each using different encodings for 
machines/tape/symbols...

The description language is the "machine language" for a particular UTM.

Q. Can we describe a language translation machine and simulate it using our UTM?

Call our UTM's machine language, L0. Suppose there is another universal language, L1, that 
can be used to describe TMs. Is there a translator TM, T-1-0, that translates a description of 
machine A encoded in L1 and produces a description of A encoded in L0?

Can we
Start with desc-L1(A)
Simulate T-1-0 
produce desc-L0(A)? Then simulate A?



How about 
--- start with desc-L2(A), 
--- simulate T-2-1 using desc-L0( T-2-1 )
--- to get desc-L1(A) 
--- simulate T-1-0 using desc-L0( T-1-0 )
--- to get desc-L0(A)
--- then simulate A?

How about 
--- start with desc-L2( A ), 
--- simulate T-2-1 using desc-L1( T-2-1 )
--- by simulating UTM-L1 using desc-L0( UTM-L1 ) 
--- to get desc-L1( A )
--- simulate A by simulating UTM-L1 reading desc-L1( A ) 



BIG IDEA: machine descriptions as input data.

--- Translate between descriptions: C++ => C => ASM => machine language (ISA)

--- Ask questions about Algorithms/Procedures/TMs using desc( M ):

    Given machine M and input x, will xM ever halt? (read "xM" as "x operated on by M").

Why not use REALLY HUGE symbol sets?

32-bit word => 4 Giga-symbol  (4 Billion)

64-bit word => 16 Exa-symbol  (16 Billion Billion)




