Base 16 (hexidecimal), positional notation for numbers:

H CAR V\O‘t &-\—l ()'AY "0x", "x", and "h" indicate hex representation for

C, LC3as, and verilog, respectively

X a base-16 digit (hex). May also represent the value of that digit.

'XA.' the base-16 digit in the i-th place. May also represent the value of that digit.

|r\0x rcprcwn'l’a;"tw\ waL

xS xz xl xo -a X3‘|£3 + Xa‘léz + 'X,'lcl + 'X°°|C°

12 3 4 — 1.+ 2.0+ 3.6+ .06

Veluas & /40)4 "h).‘*’

Hex Digit Binary Decimal Hex Digit Binary Decimal

0 0000 0 8 1000 8

1 0001 1 9 1001 9

2 0010 2 A 1010 10
3 0011 3 B 1011 11
4 0100 4 Cc 1100 12
5 0101 5 D 1101 13
6 0110 6 E 1110 14
7 0111 7 F 1111 15

LSb : Least-Significant bit {

MSb : Most-Significant bit /\1 0110010 1111 0000

N____ LSB: Least-Significant Byte
MSB : Most-Significant Byte

Hex-2-Binary (hex digit) ===> (4-bit binary)

1 2 4.
12+ 2.2+ 2.6+ Hac

(0-2°+ 0-2°+ 0.2 + 1 2%) 2% +
(0:2°+ 0%+ 1.2+ 02")2" +
(0:22+ 022+ 1.0+ 122 F

(0-23+ 1.221- 0‘2| +0.2°)lo

= 00010010 0100

n 9‘““""/ “’40’1 each Ao /9?‘,7‘ mveﬂtea(b bt binary :

k e —
(b2’ +b2+ b2 +h2°)(2") = bbbhoooo --- O
y - ¥
3 2 | 0 4*."1 A
+ <b3-2 +bz.2 +b'.2+h.2)<2\ = bsbz,hhoo oo 0
—/
k-1

16

millply by 2
Le# SAH[]L n 57lposz ion§

L.C3 Sivv|ators| See exechion, check results debug code

Using a Simulator we can

--- See Machine's Content
Registers: R0-R7, IR, PC, PSR (in hex)
Memory: address/content (in hex, w/ translation to .asm)
Branch conditions: CC (usually as "Z" or "N" or "P")

--- Alter Machine's Content (except CC)
Registers
Memory location

--- Execute instructions:
STEP (1 instruction)
RUN (w/o stopping)
STOP (stop running)
BREAK (stop when PC points to a particular memory location)

--- Set breakpoints:
Mark memory locations for BREAK

Most things work via double-clicking.
Breakpoint set: click a memory line or square icon.

projects/LC3-tools/PennSim/PennSim-1-2-5.jar

--- Double-click items to change them. Hardware is
slightly different from our LC3 and from PP's LC3.
Don't use scroll bars, use up/down arrows on your keyboard.

PennSim.jar

LC3 Simulator

éow\b\e click

t che e value

amemé)/er
4s fo9.45m

ﬂ oaéﬁ\‘
Qoaxé JCOQ ‘GL)J'

pure binar

W/ Sy m Ao) Td/e

14

;—— LC3 assembly

.ORIG x0200

add rl, r2, r3 ;
add rl, r2, #-2 ;
add rl1, r2, x3 ;

Label
.FILL x0123

1d r3, Label ;
.END

hew

PennSim - 1.2.5 $Rev: 436 $ - LC3 1SA

File About /'e)(ecu e

/'\ riy To BP

Controls
| Next Step Continue | Stop ‘
asfasm <— Comwmands
Assembly of T.asm' completed without errors or warnings. =]
Loaded object file "CicygwinthomelAddministratoriprojects\LC3tools\PennSim\f.obj M€Sjﬂ 55
Loaded symbaol file "Clcygwinthome\Administratonprojects\LC3tools\PennSim\f.sym’ j
Assembly of T.asm' completed without errors or warnings.
Assembly of Tasm' completed without errors og warnings.
Assembly of Tasm' completed without rors g‘marn .}
break pom | S‘FDP eeculion =
Registers Memory L~
RO [x0000 RE [x0000 BP {’hddress) L Valug Instruction
R1 [x0000 R7 |x0000 UTEE _ / RO | FILC %0000 -
RZ [x0000 PC |x0201 FC |_|[xO1EG ®0000 | FILL x0000 =
R3 [x0000 MPR |x0000 - | [x01ET x0000 | FILL x0000 -7 |
R4 [x0000 PsrRlxao0z PSK LI[x01E3 x0000 | FILL x0000 pad
RS [x0000 cc [z [I[x01E9 ¥0000 | FILL x000O V4
: [x01EA ¥0000 | FILL x0000 | \L
S [|x01EB ¥0000 | FILL x0000 Jd0 1
L |x01EC ®0000 | FILL x0000
[||x01ED %0000 | FILL x0000 HUAN
[|x01EE ®0000 | FILL x0000 1
[_l|x01EF %0000 | FILL x0000 —— ”
[][x01F0 %0000 | FILL x0000 SCro
[1[x01F1 x0000 | FILL x0000 ,j
[l[x01F2 ®0000 | FILL x0000 L
L]|x01F3 %0000 | FILL x0000 la0
[l[x01F4 ®0000 | FILL x0000 N
[]|x01F5 %0000 | FILL x0000 c/
[][x01F8 x0000 | FILL x0000 2/0 I
[|[x01F7 ®0000 | FILL x0000
[l[x01F8 ®0000 | FILL x0000 e
[_l|x01F9 %0000 | FILL x0000 l/eco
[][x01FA x0000 | FILL x0000 Vo
[|x01FB ®0000 | FILL x0000 A
L Ix01FC ®0000 | FILL x0000 | l
7L M 7L | [|x01FD ®0000 | FILL x0000
fl/ LI[x01FE x0000 | FILL x0000 Nry M.S
[][x01FF x0000 | FILL x0000 e
anen = || |Llx0200 x1283 |ADDR1,R2,R3 ||
| |[x0201 ¥1234 |JADD R1, RO, #12 -
o]
address ddta, mferpre‘l'a*lon
L Jaire AUUUY |FILL AUUUyY
[01FF 0000 |FILL¥0000 S
comment [Jlx0200 x1283 ADDR1,R2RI \
decimal []l0201 112BE |ADDR1,RZ #2 \
hex (no "-")
[0202 K243 ADDRY,RZ#3 =\
NEW, []/0203 LABEL 0123 [FILLx0123 \\
named address:
w0204 B KTFE |LDR3, LABEL \
|| - - - -

cannot use actual
offsets, must use
address's name.

NAme (S /énown

#I’om S'}mLol M/.e /IVIS%/UC%/'GVI is

ISSUMGJ)[’Vom
bifs i memorg

4-bit e#d 1FE =

~R

LCY OS services

An OS is software that is pre-loaded into memory.
Preloading is booting in an actual machine.
The OS provides services for programs.

Some LCS3 simulators (not ours) preloads a very primitive "OS". It is
called "LC30s", and here it is (almost all of it):

TRAP X 25’ --Halt: stop machine w/ message.

X 2 0 --Getc: one char, keyboard ==> R0O[7:0] (clears RO first).
X 2 “ --Out: one char, RO[7:0] ==> display.

X 22 --Puts: Mem[RO | ==> display (until x0000 found).

X Z 3 --In: prompts, then one char input ala Getc.

X 2)_1 --Putsp: Puts, but for packed data (2 chars per word).

We can load the same OS using our testbenches. The source code is in src/. The
instructions to build and load it are in the Makefile.

Bils | whdt you see is NOT what you 3e‘f.

ke\)l)oa(A + : Scl"ee\(\
C0n+(o‘ll€(COW\P\’ el FAY
1 SYSTEM W i
1 Pr‘ogram l_ W & erch
ac

= Turns on or
bm VIDEO Conlro \\er_} '

<)&%\350(1\’6\ +

ProCessor

DI'SPIAJ
Processor

ASCII codes ASCII codes Program executes
--- decides what you need to see
<30 0 x41 A --- sends codes to video controller
x31 1 x42 B Video controller
x43 C --- sends to display device
x38 8
x39 9 x5A Z Display processor
--- turns pixels on or off
Memor |
e b Program ~eheck by in R1
B»TS :
K_A /ﬁ»ooomo---ounoo R1 ,
000110~ 0M§{00 A”b/ mas
0000 - - - -~ 0001| R
0000 -- - -+ 0000 R3 = feswa
B8R4,
Suppose we want to see content of memory. bit
is 1.
--- LD R1, <add
--- detect b<|::l . SeV\Cl ASCI
--- send ASCII "
--- shift mask, detect next bit {-\or 1 00110001
--- send ASCII bit
. is 0.

D i S PL A 7’ Programmer:

"Decisions, decisions!"
"What order should the bits appear?"
"Which is low-order bit?"

Possibilities (bits)

(1. . b Least Significant bit to Most Significant bit,
) b° b b |5 BUT doesn't look like a number.

(z_) l) e o o b b b Most Significant bit to Least Significant,
\5 BUT printed in backwards order.

Tm)ina

o bc C‘ e:F 3 Sfofdj& bu}%r: chen cb, [a4]

(— First typed -- First dispayed) (___/

Last typed -- Last dispayed

prin'hﬂz

abcdefghijklmnopgrstuvwxyz

(4] e, [25]
]Zlﬂ (=0 b L=25 fﬂ'“#(“ecuj JL [ﬂ)

o.bcde?---;

First char -- First dispayed)

Last char -- Last dispayed

humbzrs

11001000 0000000011001000

First typed -- First dispayed /) /b .
bit)s

Jg-bit rejn'ﬂLer o ot nj

L2 /:>}+,¢

1=

Last typed -- Last dispayed

prinhﬂa

tni=0 % £=I5
(77 0 gwym %7[(0 ”)
%(ﬂ A ﬁ) p/um{'][(“'f/
,M.{,Hn

bits are backward?

000100110000 0000 LSb on left

[b}u

MSb on right
bit. I

Print 4-bit numbers in order, first-to-last (smallest-address to biggest-address)

| Mem
1 number Lagt numbey Y-b;t 4ddress

_L l 0001

(case 1) 1011 0100 1110 0001

\ 0010

Vitg bit I8 0411

0100

- O0|O|-=
o—-\Oa—\
O~ =0
=0 |

BUT each 4-bit number is backwards

4-bit numbers
M h\lMl)eX Las’f n\m\)er l7"’°'-+ mehorj wora s

4 1

(case 2.) 1101(0010 0111 1{00 numbers OK, BUT bits are jumbled

bikg bit.l5

Print 8-bit numbers in order, first-to-last (smallest-address to biggest-address)

1% number Last numbey

1\

(case 1) 10110100 11100001 ALL bits are in order,

K LSb-to-MSb, left-to-right,
. BUT each 8-bit number is backwards

15" number Last numbey

L \! numbers OK, BUT bits are a TOTAL jumble,
(case 2.) 00101101 10000111 even 4-bit units are swapped within each

L}{‘.¢’) \I\Jrki’rﬂ |
\‘)

oy
2% 4k W m > 4-bit wum 37 bt

Basic problem: NUMBERS are Arabic (right-to-left), and our writing is left-to-right. In olden times,
numbers were expressed in writing, e.g., "four and twenty blackbirds", left-to-right, in writing order.
If we wrote numbers left-to-right, least-significant-to-most-significant, case (1.) would be perfect.
If we wrote everything right-to-left, case (1.) would have all bits reversed, and be perfect, too.

FUN with BITS using unix's "od"

More on the difference between ASCII representation of bits and actual bits.
(For ASCII codes, ee, http://www.asciitable.com/ , or in Patt&Patel appendix.)

At a unix terminal window, enter,
echo "abcd" | od -t x1

"echo" first sends the byte for 'a' (01100001), then for 'b' (01100010), and so on. "od" reads them in that
order, as bits, and gives a hex representatin of the bits it received. You will see the ASCII codes for each
byte that echo sent to od (plus an extra byte for an assumed end-of-line), expressed in hex:

61 62 63 64 Oa (as bits, this would be: 01100001 01100010 01100011 0110100 00001010)

We would naturally think of this as the bytes of memory, smallest-address to biggest-address.
Now enter this,

echo "1234" | od -t x1
echo "1234" | od -t x2
echo "1234" | od -t x4

You will again see ASCII codes. The "real" bits for the first character, '1', are 00110001 (x31).
("-t x2" means, interpret two bytes as one object; "-t x4", four bytes per object.)
You will see this,
31 32 33 34 (as bits: 00110001 00110010 01100011 0110100

3231 3433 (as bits: 001100100110001 001110000110011

34333231 (as bits: 00110100001100110011001000110001
If you think of the first byte in memory as containing the least-significant bits of a number, it would depend on
the number of bytes the number had as to which byte you display first. If the number has 16 bits, then the

first 16 bits would be expressed 3231 in hex, but if it was a 32-bit number, you would display 34333231 in
hex.

But, if we read things in right-to-left order, thinking of memory as laid out right-to-left, and printing bytes right-
to-left, we would have,

"4321"
"4" g2t "t
34 33 32 31
3433 3231
34333231
In all cases, the least-significant bit is the rightmost, the least significant byte is the rightmost, and so forth.
To accommodate the switching back and forth (and some other less important reasons), some machines put

the most-significant byte of a number in the lowest byte address (called "big endian", as opposed to "little
endian").

| &st word m bt L‘»‘\ﬁ* n Mem, €9, .-

Let's look @ memory layed out with the big That is, the bits are ordered starting at address x0000:
end at the top and the small end at the

bottom: Mem[xFFFF][xF] == MSb of Word_xFFFF

_ Mem[xFFFF][x0] == LSb of Word_xFFFF
Big-end :address xFFFF

Small-end : address x0000 Mem([x0001][xF] == MSb of Word_x000f

_ Mem[x0001][x0] == LSb of Word_x0001

Further, consider memory layed out LSb to Mem[x0000][xF] == MSb of Word_x0000
MSb, bit by bit, and word by word, starting Mem[x0000][x0] == LSb of Word_x0000

at address x0000 and going upward. -

Memary (oo Lik)

MSb

|‘l 0 \io \ Wlmu

MSB

MSb
MSB

2 LSb

(
(=3
o
=
S

16-bit word at address
x0000

2B-addressable
memory:

x 0001 , ke 16-bit LJo‘kCS;

|‘1 0 I‘o \ mmd_¢

(
(=3
o
=
(=]

—

%)

O
_.o__o-—oo-—-oo-—o—‘_.ot__o_—oo-—~oo——0——

x 0000 , Le3 1Lt «ddress

Suppose we extend LC3 addresses by one bit (17-bit addresses) to have a Byte-addressable
memory:

17-bit address
11111111111111111
11111111111111110

00000000000000101
00000000000000100
00000000000000011
00000000000000010
00000000000000001
00000000000000000

8-bit content
MSB of Word_xFFFF
LSB of Word_xFFFF

MSB of Word_x0002
LSB of Word _x0002
MSB of Word_x0001
LSB of Word_x0001
MSB of Word_x0000
LSB of Word_x0000

How would we jﬁjoﬂl a 64-bit valve ?

W-bit wem

ARy

x0003

X0002

X 000 |

% 0000

mse,

LS8,

Mms 6,

LS ﬂz

Ms8,

LS8,

MS 8,

Ls 6,

éy-b (8 B) V"J.IM.

MSB, LsB, MsB, LSB MSB LSB MsB LSB

—

bits are in order, top-to-bottom,

MSb-to-LSb:

bit-63 is MSB3[7]
bit-62 is MSB3[6]

bit-2 is LSBO[2]

bit-1

is LSBO[1]

bit-0 is LSBO[0]

Little-endian:
MSB towards big end
LSB towards small end

Big-endian:
LSB towards big end
MSB towards small end

Big-endian reverse bytes as 64-b value:

MSB LSB
LSBO MSBO LSB1 MSB1 LSB2 MSB2 ... LSB3 MSB3

Is there an advantage to big-endian? Well, if you print
bytes starting at LSBO, it will come out MSB-to-LSB, left-
to-right, and look ok as a number.

