
Base 16 (hexidecimal), positional notation for numbers:

 "0x", "x", and "h" indicate hex representation for
 C, LC3as, and verilog, respectively

a base-16 digit (hex). May also represent the value of that digit.

the base-16 digit in the i-th place. May also represent the value of that digit.

Hex Digit Binary Decimal
------------ --------- -----------
 0 0000 0
 1 0001 1
 2 0010 2
 3 0011 3
 4 0100 4
 5 0101 5
 6 0110 6
 7 0111 7

Hex Digit Binary Decimal
------------ --------- -----------
 8 1000 8
 9 1001 9
 A 1010 10
 B 1011 11
 C 1100 12
 D 1101 13
 E 1110 14
 F 1111 15

LSb : Least-Significant bit
MSb : Most-Significant bit

LSB : Least-Significant Byte
MSB : Most-Significant Byte

(hex digit) ===> (4-bit binary)
Hex-2-Binary

 Using a Simulator we can

--- See Machine's Content
Registers: R0-R7, IR, PC, PSR (in hex)
Memory: address/content (in hex, w/ translation to .asm)
Branch conditions: CC (usually as "Z" or "N" or "P")

--- Alter Machine's Content (except CC)
 Registers
 Memory location

--- Execute instructions:
 STEP (1 instruction)
 RUN (w/o stopping)
 STOP (stop running)
 BREAK (stop when PC points to a particular memory location)

--- Set breakpoints:
 Mark memory locations for BREAK

Most things work via double-clicking.
Breakpoint set: click a memory line or square icon.

 projects/LC3-tools/PennSim/PennSim-1-2-5.jar

--- Double-click items to change them. Hardware is
slightly different from our LC3 and from PP's LC3.
Don't use scroll bars, use up/down arrows on your keyboard.

PennSim.jar

LC3 Simulator

;---------------

;-- LC3 assembly

;---------------

.ORIG x0200

 add r1, r2, r3 ;-- comment
 add r1, r2, #-2 ;-- decimal

 add r1, r2, x3 ;-- hex (no "-")

 ;-- NEW,

 ;-- named address:

Label

.FILL x0123

 ld r3, Label ;-- cannot use actual

 ;-- offsets, must use

 ;-- address's name.

.END

An OS is software that is pre-loaded into memory.
Preloading is booting in an actual machine.
The OS provides services for programs.

Some LC3 simulators (not ours) preloads a very primitive "OS". It is
called "LC3os", and here it is (almost all of it):

--Halt: stop machine w/ message.

--Getc: one char, keyboard ==> R0[7:0] (clears R0 first).

--Out: one char, R0[7:0] ==> display.

--Puts: Mem[R0] ==> display (until x0000 found).

--In: prompts, then one char input ala Getc.

--Putsp: Puts, but for packed data (2 chars per word).

We can load the same OS using our testbenches. The source code is in src/. The
instructions to build and load it are in the Makefile.

01100001

01000001

01100010

01100011

ASCII codes
 ...

x41 A
x42 B
x43 C
 ...

x5A Z
 ...

ASCII codes
 ...

x30 0
x31 1
 ...

x38 8
x39 9
 ...

Program executes
--- decides what you need to see
--- sends codes to video controller

Video controller
--- sends to display device

Display processor
--- turns pixels on or off

bit
is 1.

Suppose we want to see content of memory.

--- LD R1, <address>
--- detect bit
--- send ASCII
--- shift mask, detect next bit
--- send ASCII
 . . .

Programmer:

"Decisions, decisions!"
"What order should the bits appear?"
"Which is low-order bit?"

bit
is 0.

Least Significant bit to Most Significant bit,
BUT doesn't look like a number.

Most Significant bit to Least Significant,
BUT printed in backwards order.

First typed -- First dispayed

Last typed -- Last dispayed

a b c d e f g h i j k l m n o p q r s t u v w x y z

First char -- First dispayed

Last char -- Last dispayed

First typed -- First dispayed

Last typed -- Last dispayed

 0 0 0 0 0 0 0 0 1 1 0 0 1 0 0 0

bits are backward?
LSb on left
MSb on right

Print 4-bit numbers in order, first-to-last (smallest-address to biggest-address)

1011 0100 1110 0001

1101 0010 0111 1000

BUT each 4-bit number is backwards

numbers OK, BUT bits are jumbled

Print 8-bit numbers in order, first-to-last (smallest-address to biggest-address)

 10110100 11100001 ALL bits are in order,
LSb-to-MSb, left-to-right,
BUT each 8-bit number is backwards

 00101101 10000111
numbers OK, BUT bits are a TOTAL jumble,
even 4-bit units are swapped within each
number.

Basic problem: NUMBERS are Arabic (right-to-left), and our writing is left-to-right. In olden times,
numbers were expressed in writing, e.g., "four and twenty blackbirds", left-to-right, in writing order.
If we wrote numbers left-to-right, least-significant-to-most-significant, case (1.) would be perfect.
If we wrote everything right-to-left, case (1.) would have all bits reversed, and be perfect, too.

FUN with BITS using unix's "od"

More on the difference between ASCII representation of bits and actual bits.
(For ASCII codes, ee, http://www.asciitable.com/ , or in Patt&Patel appendix.)

At a unix terminal window, enter,

 echo "abcd" | od -t x1

"echo" first sends the byte for 'a' (01100001), then for 'b' (01100010), and so on. "od" reads them in that
order, as bits, and gives a hex representatin of the bits it received. You will see the ASCII codes for each
byte that echo sent to od (plus an extra byte for an assumed end-of-line), expressed in hex:

 61 62 63 64 0a (as bits, this would be: 01100001 01100010 01100011 0110100 00001010)

We would naturally think of this as the bytes of memory, smallest-address to biggest-address.
Now enter this,

 echo "1234" | od -t x1
 echo "1234" | od -t x2
 echo "1234" | od -t x4

You will again see ASCII codes. The "real" bits for the first character, '1', are 00110001 (x31).
("-t x2" means, interpret two bytes as one object; "-t x4", four bytes per object.)
You will see this,

 31 32 33 34 (as bits: 00110001 00110010 01100011 0110100

 3231 3433 (as bits: 001100100110001 001110000110011

 34333231 (as bits: 00110100001100110011001000110001

If you think of the first byte in memory as containing the least-significant bits of a number, it would depend on
the number of bytes the number had as to which byte you display first. If the number has 16 bits, then the
first 16 bits would be expressed 3231 in hex, but if it was a 32-bit number, you would display 34333231 in
hex.

But, if we read things in right-to-left order, thinking of memory as laid out right-to-left, and printing bytes right-
to-left, we would have,

 "4321"

 "4" "3" "2" "1"

 34 33 32 31

 3433 3231

 34333231

In all cases, the least-significant bit is the rightmost, the least significant byte is the rightmost, and so forth.
To accommodate the switching back and forth (and some other less important reasons), some machines put
the most-significant byte of a number in the lowest byte address (called "big endian", as opposed to "little
endian").

LSb

MSb

LSB

MSB

16-bit word at address
x0000

2B-addressable
memory:

 That is, the bits are ordered starting at address x0000:

 Mem[xFFFF][xF] == MSb of Word_xFFFF
 Mem[xFFFF][x0] == LSb of Word_xFFFF
 ...
 Mem[x0001][xF] == MSb of Word_x0001
 Mem[x0001][x0] == LSb of Word_x0001
 Mem[x0000][xF] == MSb of Word_x0000
 Mem[x0000][x0] == LSb of Word_x0000

Let's look a memory layed out with the big
end at the top and the small end at the
bottom:

 Big-end : address xFFFF
 Small-end : address x0000

Further, consider memory layed out LSb to
MSb, bit by bit, and word by word, starting
at address x0000 and going upward.

LSb

MSb

LSB

MSB

Suppose we extend LC3 addresses by one bit (17-bit addresses) to have a Byte-addressable
memory:
 17-bit address 8-bit content
 ---------------------------- ----------------------
 11111111111111111 MSB of Word_xFFFF
 11111111111111110 LSB of Word_xFFFF

 00000000000000101 MSB of Word_x0002
 00000000000000100 LSB of Word_x0002
 00000000000000011 MSB of Word_x0001
 00000000000000010 LSB of Word_x0001
 00000000000000001 MSB of Word_x0000
 00000000000000000 LSB of Word_x0000

Little-endian:
 MSB towards big end
 LSB towards small end

Big-endian:
 LSB towards big end
 MSB towards small end

Big-endian reverse bytes as 64-b value:

 MSB LSB
LSB0 MSB0 LSB1 MSB1 LSB2 MSB2 ... LSB3 MSB3

Is there an advantage to big-endian? Well, if you print
bytes starting at LSB0, it will come out MSB-to-LSB, left-
to-right, and look ok as a number.

bits are in order, top-to-bottom,
MSb-to-LSb:

bit-63 is MSB3[7]
bit-62 is MSB3[6]
 ...
bit-2 is LSB0[2]
bit-1 is LSB0[1]
bit-0 is LSB0[0]

