
 ADD R3, R2, R1 (register-register-register mode)
IR[0001 011 010 0 00 001]

RegFile[IR[11:9]] <=== RegFile[IR[8:6]] + RegFile[IR[2:0]]

 ADD R3, R2, x1 (register-register-immediate mode)
IR[0001 011 010 1 00001]

RegFile[IR[11:9]] <=== RegFile[IR[8:6]] + IR[2:0]

 LEA R3, x1 (register-register-immediate mode)
IR[1110 011 000000001]

RegFile[IR[11:9]] <=== PC + IR[8:0]

RegFile[DR] <== Mem[Mem[PC + PCoffset9]]

Two memory accesses

 1. PC-relative

MAR <=== PC + IR[8 : 0] (PC content is address)

MDR <=== MEM[x1234 + x34] (Fetch from memory)

 2. Memory-relative

PC content is address

Fetch from memory

Memory content is address

Fetch from memory

aka, register-indirect
aka, register-relative

MAR <=== RegFile[IR[8:6]] + IR[5:0]

1100 0000 0000 0000 ;-- GDP
LD R5 x-2 ;-- init GDP
LDR R3 R5 x3 ;-- read A
LDR R4 R5 x2 ;-- read B
ADD R2 R3 R4 ;-- C <== A+B
STR R2 R5 x1 ;-- write C

LDR R1 R5 x0 ;-- load S pointer
LDR R2 R1 x0 ;-- read "ab"
...
STR R2 R1 x0 ;-- write "wx"

LDI R4 x-2 ;-- read KB i/o reg.

WE NEED a COMPLETE language for describing machines (TMs).

WE HAVE functions: NAND (AND, NOT) is universal (+ bonus, ADD)
WE HAVE tape: LD, ST (and variants)

DON'T HAVE branching for simulated machine (described machine).

Machine Description

 description of
 next-state function:
 cond <=== F()

 IF (cond) THEN
 A
 ELSE
 B
 end-IF

Can we simulate any machine?

Some machines have many-way branching:jj

 --- 32-bit symbols ===> 4G-way branching

 --- minimum branching: 2-way (if-then)

 --- k-way branches can be built from 2-ways

Branching: load the PC based on condition evaluation

 --- same addressing modes for branches

 --- branch condition
 == function of symbols that were read (think, Turing Machines)
 ==> compare symbols (symbol1 == symbol2 ?)

 --- What was the result of the comparison?
 LC3 Branch Condition Codes (CC):
 last value written to a register was,
 Negative or Zero or Positive
 PSR.N == 1 PSR.Z == 1 PSR.P == 1

Branch condition function is evaluated,

result goes into CR.

Address to branch to goes to AR.

Branches if CR < 0; else PC <=== PC+1

LC3, REMEMBER RESULT of FUNCTION EVALUTION

 LD_CC

 on ANY register load (AND, ADD, NOT, LD, ...)

 N = BUS[15] <was it negative?>
 Z = NOR(BUS[15..0]) <was it zero?>
 P = NOT(N)*NOT(Z) <was it positive?>

SAVE BRANCH CONDITION (State-32):

 BEN <== (CC & IR[11:9]) && (IR[15:12] == 0000)

 BEN == 0 : Don't Branch
 BEN == 1 : Do Branch

 affects LD_PC in State-22 (Branch taken)

What about remembering BEN?

What does this instruction do?
 0000 000 1 1111 1111
And this one?
 0000 111 1 1111 1111

Range of BR?
The range of BR is limited (9 bit offset ~ 256 +-). We
need to be able to jump anywhere (64k). We could
reach anywhere w/ chained BRs. But we'd like
another instruction that jumps anywhere.

0000 1 0 1 0 00001 010

 & & &

 BEN <=== 1
 if
 (N AND n) (BRn)
 OR
 (Z AND z) (BRz)
 OR
 (P AND p) (BRp)

 0000 1 0 1 0 00001 010

 15 3 2 1 0

state-32: BEN stored
state-0:
 BEN == 1?
 yes: go to state-22
 no : go to state-18
state-22:
 LD_PC <== 1

What kind of branch decisions can we make?

 BR 0 0 0 PCoffset9

 & or & or &

 BR 1 1 1 0 0000 0000

 BR 1 0 0 PCoffset9

 BR 1 1 0 PCoffset9

BRn (BRp)

 BRnz (BRzp)

BRnzp (aka, BR) BR 1 1 1 PCoffset9

 BR 0 1 0 PCoffset9 BRz

;--------------------------
;--- A in R1, B in R2
;--------------------------
NOT R3, R2 ;--- R3 <== -B
ADD R3, R3, #1

ADD R3, R1, R3 ;--- R3 <== A-B

BRz (+1) ;--- if (A == B)
BRnzp (+100)
 ;--- then

 BR 0 0 0 0 0000 0000

 LC3 Branch Logic

Condition Codes are PSR[2:0] == { N, Z, P }

state-32: LD_BEN[32] = 1'b1;

For any state k that writes a
register: LD_CC[k] <== 1'b1

PSR[2 : 0] ==
 { CC_N, CC_Z, CC_P }

IR[11 : 9] ==
 { IR_N, IR_Z, IR_P }

If (CC_N == IR_N OR
 CC_Z == IR_Z OR
 CC_P == IR_P)
 and
 (current instruction is BR)

then

 Let controller know to jump
 BEN <== 1

PC incremented in fetch-
instruction phase.

Offset IR[8 : 0] comes
into addrArith and
through SEXT9x16.

Branch target address
evaluated in addrArith.

offsetAddr loaded to PC.

BR_Logic

addrArith

offsetAddr is

 (incremented PC)
 +
(sign-extended PCoffset-9 from IR)

But, we still need JMP

9-bit PCoffset9 ===> + or - (1/2) 2^9
 about 2^8 range (256)

Not very far, out of 2^16 (64k) memory locations.

How can we jump farther?

LC4: How to
 if (R1 == R2) (A in R0, B in R1)

R7 <=== (branch target address)

ALU SR0 SR1 DR2 SUB //-- set R2 = A - B
BRR CR2 AR7 //-- branch if A < B)
ALU SR1 SR0 DR3 SUB //-- set R2 = B - A
BRR CR2 AR7 //-- branch if B < A
 ... (no branches, A == B)

PC <= REGfile[SR]

Use any 16-bit address,
jump anywhere.

 1100 - - - 1 1 1 - - - - - -

Jump in LC4:

R7 <=== target address
R2 <=== -1
BRR CR2 AR7

LIM DR7 h56 #-- R7 <== 8 msb of address
(ALU SR7 SR7 DR7 ADD) x 8 #-- 8-bit left-shift R7
LIM DR6 hD8 #-- R6 <== 8 lsb of address
ALU SR6 SR7 DR7 ADD #-- target (h56D8) ==> R7
ALU SR2 SR2 DR2 SUB #-- 0 ==> R2
ALU SR2 SR2 DR2 DEC #-- -1 ==> R2
BRR CR2 AR7 #-- jump R7

 ABSTRACTION == FUNCTIONS:
 Write code ONCE -- use ANYWHERE
 --- abstraction == interface + hiding details

Can we jump:
-- TO function code FROM anywhere?
-- BACK to where we came from?

IDEA: use
-- MEMORY POINTER to jump TO
-- REGISTER to jump BACK

Funtion call and return:

LEA R7, 2 //------- (save BACK addr)
 // R7 <== PC+2 == 151+2

LD R1, -51 //------- (get TO addr)
 // R1 <== Mem[100] ==300

JMP R1 //------ (jump TO function)
 // PC <== R1 == 300

JMP R7 //------ (jump BACK)
 // PC <== R7 == 153

--- low-level abstraction
 == sub-cell (Electric)
 == function (e.g., C)
--- jump to function
 data to input ports
 == arguments
--- jump back from function
 data from output ports
 == return values

JMP R7 PC <== R7
(aka, RET)

R7 <== PC as in (2) above
PC <== RegFile[SR] as in (3) above

R7 <== PC
PC <== PC + PCoffset11

Function calls are common.
Let's make it easier for the programmer.

 0100 0 - - 0 0 1 - - - - - -

 0100 1 000 1000 0010

Set R4 to point to a table permanently.
Use jump table from any location in memory.
Full 16-bit addresses: jump anywhere.

LC4, jump to function using the table

First, we get the location of g's pointer:

LIM DR0 h1 #-- R0 <== g's offset

ALU SR0 SR4 DR0 ADD #-- R0 + R4 ==> R0

Next we get g's address from the table:

LDR DR2 AR0 #-- R2 <== g's address

Finally, jump to g:

ALU SR0 SR0 DR0 SUB #-- 0 ==> R0

ALU SR0 SR0 DR0 DEC #-- -1 ==> R0

BRR CR0 AR2

Note, we didn't set R7; we cannot jump back. See below.

Let's use a Global Data Table as part of our program. It

holds addresses and constants our program needs. We

put the address of the function in the table.

Define the Global Data Table (GDT):

.ORIG h0100
#-- This is our Global Data Table
.FILL d0 # 1st thing in table
.FILL d0 # 2nd thing in table
.FILL h3000 # function's address

Initialize Global Data Pointer (GDP):

R4 is our GDP. Program starts at 0200.

.ORIG h01ff

.FILL h0100 # pointer to GDT
LEA DR0 # R0 <=== PC
ALU SR0 SR0 DR0 DEC # R0--
ALU SR0 SR0 DR0 DEC # R0--
LDR DR4 AR0 # R4 <=== pointer

Our GDP is now ready to use.

To jump to a function, we need to: a) get its address; b)

put the return address into R7; c) make the jump. We

did (a) and (c) above.

LC4, function call using GDT

#-- Get address of function into R3:
LIM DR0 d2 # R0 <=== offset 2
ALU SR0 SR4 DR0 ADD # R0 + GDP ==> R0
LDR DR3 AR0 # R3 <=== address

#-- Set R7 w/ return address
LEA DR7 # R7 <=== PC
LIM DR0 d4 # R0 <=== 4
ALU SR0 SR7 DR7 ADD # R0 + R7 ===> R7

#-- Jump to function
ALU SR0 SR0 DR0 SUB #-- 0 ===> R0
ALU SR0 SR0 DR0 DEC #-- -1 ===> R0
BRR CR0 AR3 #-- jump to function

The constant, 4, is not obvious until we have all the code

so we can see where to return to.

We load our function at address h3000. All this function

does is return using the address in R7.

.ORIG h3000
#-- Jump back via R7
ALU SR0 SR0 DR0 SUB # 0 ===> R0
ALU SR0 SR0 DR0 DEC # -1 ===> R0
BRR CR0 AR7 # jump R7

LC3, function call using the table

First, we evaluate the address of g's pointer, and load from that

address into R2:

LDR R2, R4, #1 ;-- R2 <== MEM[R4 + g's offset]

Then we jump, setting R7 to the return address:

JSRR R2 ;-- R7 <== PC; PC <== R2

 00000000 0000010

trap-02:
 ADD
 LD
 ...
 ...
 JMP R7

OS provides many functions programs can call.

LC3:
1. put all the pointers in a table.
2. provide access via special instruction.

R7 <== PC //---- save RETURN addr

MAR <== trapvect8 //---- dereference vector, i.e., get
MDR <== Mem //---- Trap-02's address from VT

PC <== MDR //---- JMP to Trap-02 body
...
... //---- do Trap-02 work
...
PC <== R7 //---- JMP back to RETURN address

--- PROGRAM INDEPENDENCE
 jump via STANDARD VECTORS
 --- OS convention (see OS manual)
 Write VT at boot time, functions are relocatable.

--- OS FUNCTION CALL
 --- OS provides services
 Programs never need to know details.
 ===> get arguments, return results?
 registers, memory, stack (more later).

 1111 0000 00000010

--- Trap Vector Table (VT)
 8-bit index ==> 256 entries [x0000 -- x00FF]
 256 OS functions (OS entries)

--- Linux uses VT vector 80 for all entries to OS
 Use R0 for function code
 32-bit register ==> 4G functions possible.

--- OS services, e.g.,
 I/O via device registers:
 LD/STR and memory addresses
 OS contains all "driver" code

--- Other mechanisms similar to TRAPS:
1. Interrupts: I/O devices

 make service requests,
 ==> jump to OS.

2. Exceptions: errors
 divide-by-zero, illegal opcode, etc.,
 ==> jump to OS.

TRAP (function call)

State-15:

 MAR <== ZEXT(IR[7 : 0]) //--- get f()'s VT entry's address

State-28:

 R7 <== PC //--- save "return" address
 MDR <== MEM //--- get f()'s address from VT

State-30:

 PC <== MDR //--- jump to f()

Each state executes
one instruction.

Each state branches
depending on new
opcode.

Actually, there are 10
more states, all are
Illegal-opcode. One
for each unused 4-bit
opcode.

opcode

opcode

opcodeopcode

opcode

opcode

