
basicArchitectures

What we are looking for

-- A general design/organization

-- Some concept of generality and completeness

-- A completely abstract view of machines
 a definition
 a completely (?) general framework

-- An introduction to a common, standard ISA

-- An introduction to the LC3

Getting in tune with the current scene,
listen to

Dave Patterson:

 Computer Architecture is Back:
 Parallel Computing Landscape

http://www.youtube.com/watch?v=On-k-E5HpcQ

(input = αααα output = λλλλ move = L)
 State input output move Next State

Completely General, Abstract

Any computing machine (?)
 --- Define "Computation"

Can prove mathematical statements
 --- Define Algorithm
 --- The UN-computable
 --- Limits on Time/Space

Description of machine M:
--- M's states
--- M's symbols
--- M's rules

We need a language rich enough to describe

 ---- any function: next-state or data operation
 ---- read/write operations
 ---- state change for M

with this we can describe ANY machine, and simulate it.

 Description
 of machine
 M
 in some
 "language"

We need:
1) To keep track of M's state
2) read/write data symbols
3) data operations
4) next-state function F(state, input)

nand(a, b) ===> f
nand(c, d) ===> e

Program describes completely, how
--- Machine M changes state
--- next state depends on current state and current input
--- output depends on input and M's current state
--- M "moves" to another location to read next symbol

Building calculating
machines

-- SSEM
-- Manchester Mark 1
-- Ferranti Mark 1
-- IAS
-- ENIAC

Need some way for the machine to
"know" the outcome: go left or right.

NB--It's not obvious what capabilities we need.
Can we find a model that could tell us that?

Memory == an array
address == array index.
Two Operations:

store data: in ==> Memory[address]

retrieve data: out <== Memory[address]

Recreate branched graph
in linear memory.

Execution follows a path
through graph.

ADD SUB
MULTIPY DIVIDE
 ...

Load Reg, Address
Store Reg, Address

Push Reg
Pop Reg

Necessary for TM completeness:
--- Changing M's state
 --- Go to other part of description
 (depending on data)

Jmpz Addr1

 Jmp

Two devices cannot both set the
signal value on a wire at the same
time. E.g., A says it's "0" and C says
it's "1".

BUS is shared between devices.
Controller enables exactly one at a time; e.g.,

Busses (because you see them here and there)

Turing View of a Computer

--- a machine can be described as a table of rules
 (current-state, input ===> output, next-state)

--- input, a symbol, is read from "memory"
--- a rule is applied according to
 --- what the current state is
 --- which symbol was read
--- output, a symbol, goes to "memory"
--- the machine changes state
--- repeat

von Neumann View of a Computer

--- a "program" is a sequence of
 step-by-step instructions

--- instructions are read from "memory"
--- the instruction is read into a "register"
--- a controller "executes" the instruction
 --- data is read from "memory"
 --- a "register" remembers what was read
 --- an operation changes the data
 --- a register stores the result
 --- the result is written to "memory"
--- repeat

 How they correspond:

 Turing von Neumann

 a State A section of the program
 a change of state jumping to a different section
 a rule's output part a section that produces a new output
 a rule's state-change part a section that calculates the next jump

signals travel on a wire:
 A sends a "0" to B.

C cannot use same wire,
even at a different time?
A's output tied to C's output?

A is connected to BUS
B is disconnected from BUS

A "tri-state buffer"

G

S D

DS

DS

G

S D

DS

DS

Passes a "0" cleanly

Passes a "1" cleanly

E = 1 : Passes 1 or 0 cleanly (inverted)

E = 0 : Passes neither, no conduction,
 high impedance

in == 0 then out == 1
in == 1 then out == 0

 Verilog wire signal values

X -- unknown (for various reasons) 1 -- voltage for "1"
Z -- high impedance 0 -- voltage for "0"

 Machine Cycle
================
Fetch instruction
Decode instruction
Evaluate address
Fetch operands
Execute instruction
Store result

MAR, memory
address register:

which memory
cell is accessed.

MDR, memory
data register:

data sent to, or
received from
memory.

sets control signals
as needed,
orchestrates

PHASE:
Fetch instruction

-- 1st step, state 18

PC <== PC+1
MAR <== PC

(Happens in parallel,
finalized when clock
pulse arrives.)

(continue)
Fetch instruction, first step:

Load MAR w/ address in PC

FSM Controller must set
signal values for State-18:

GatePC <== 1'b1
PCMUX <== 2'b00
LD_PC <== 1'b1
LD_MAR <== 1'b1

An instruction,
one word,
one symbol
of program.

Fetch-instruction,
2nd step, state 33

Fetch-instruction,
3rd step

Instruction is
remembered,
 ie., "registered" in
IR

Control signals for
state-35:

 GateMDR <== 1'b1
 LD_IR <== 1'b1

This completes the Fetch-instruction phase.

Overall effects:

 IR <== 16'b 1011 0011 0101 0000 (16-bit instruction, from memory)

 PC <== 16'b 0001 0010 0011 0101 (a 16-bit memory address)

Or, to put it in other ways:

 IR <== 16'h B350
 IR <== Mem[16'h 1234])
 PC <== 16'h 1235

Decode phase

Next state of controller
is determined by

 IR[15 : 12]

the "opcode" portion of the
instruction. E.g.,

 IR[15 : 12] = 4'b1011

next state is State-11
(or, State-B, in hex)

Evaluate Address phase

Calculated in addrArith.
Sources for calculation are:

--- RegFile (a register)
--- PC
--- IR

Resulting address sent to:

--- PC, change state
 jump to different part of program
 (instructions JMP, BR, INT, TRAP)

OR

--- MAR, data transfer
 memory-to-register
 register-to-memory
 (instructions LDR, STR)

D-FF D-FF D-FF D-FF

Some registers (flip-flops),
and a way to select,
--- which to output
--- which to write

N 1-bit D-FlipFlops

D-FF D-FF D-FF D-FF

Holds a 4-bit "word"

E=1: data D written to FF on next clock pulse

data output
--- out_1
--- out_2
data select
--- Sel_1
--- Sel_2

data input
--- in
write select
-- write_Sel
read/write control
--- RW

clock input
--- clock

4 N-bit registers

move data from memory
to a register (e.g., LD)

OR

send data to ALU
from a register
or some of the IR's bits

LC3's "load from memory"
instructions (LD, LDR, LDI) do
nothing after copying from the
MDR to a register.

ALU operation and making
result available on BUS
(e.g., ADD, SUB, NOT)

OR

 Load the PC with an
address calculated in
Evaluate Address phase, or
from another source (e.g.,
interrupt vector).

Instructions that do (2.) are
JMP, BR, TRAP, as well as
system generated action
from hardware, interrupts
and exceptions.

--- No instruction uses every phase.

--- Multiple instructions could be simultaneously in
different phases. (How about same phase?)

--- Some phases must wait for the previous phase to
complete (eg., memory access)

write ALU result
to a register.

OR

copy
from source register
to destination
register.

OR

copy
from register
to memory location.

 Machine Cycle
================
Fetch instruction
Decode instruction
Evaluate address
Fetch operands
Execute instruction
Store result

Two memories, one for instructions, one for data.
Layed out as a "pipeline" ==> more parallelism.

How do we map our instruction-execution phases to
this architecture?

LC4, Only ONE cycle per instruction

--- Two memories, instructions and data
--- controller sets all control signals for proper flow
--- Does not need IR, instruction memory output is stable

vs.

LC3, many cycles per instruction

--- One memory, used first for instruction, then data
--- controller handles parts of operation at a time
--- Needs IR to remember instruction

We focus on the processor.

System includes many other devices:
--- memory controller, memory banks
--- keyboard, display
--- disk drives
--- I/O bus controllers
--- network interfaces
--- communication channels for video
--- GPUs
--- etc.

At large scale,
system is von Neumann Architecture.
At small scale,
processor might be Harvard Architecture.

Controller

Datapath
-- registers
-- ALU

Processors can be implement either way.

Systems are typically von Neumann.

Processors can be either von Neumann or Harvard (Intel x86, Pentium, ...).

Enhancements (?)
--- more processor hardware, built-in functionality (caches, branch prediction, ...)
--- multiple processors
--- simpler, low-power
--- wider (more bits per register)
--- wider (copied functional units)
--- wider (multiple, different functional units)

Instruction
memory
(cache)

Data
memory
(cache)

address

000

001

010

011

100

101

110

111

A cache is a small memory.

Cache Memory Read Operation

 Get address input.

 Search all cache cells {
 if address == cell's tag,
 send cell's data to output
 else
 try next cell
 }
 if Search failed {
 cache "miss";
 get data from Main Memory;
 write tag+data into cell;
 send data to output.
 }

Writes are similar, but data goes the other way.

Data is transfered between cache and main
memory as needed.

Cache is fast, main memory is slow.

Cache ABSTRACTION provides illusion that,

 ---- Access is just memory access:
 address goes in, data comes out.

 ---- Two Memories, IMEM and DMEM:
 separate, independent accesses

 ---- Single, unified, von Neumann memory:
 one memory, one address space.

Advantages

---- Memory access can appear to be very fast,
when in fact it is very slow: If data is reused,
cache can respond immediately, without waiting
for slow main memory response.

---- Two caches allow two memory accesses in
parallel (simultaneously).

Cache Operation Complications
Handling the new problems created:

---- tag+data is not in cache?
Must stall the processor when cache misses?
How do we stall a processor?

---- write operation?
Will cache and main memory data differ?
Should both be written at same time?
Should we wait and write main memory later?

--- overlapping accesses from both caches?
IMEM reads instruction that DMEM is writing?
Should IMEM wait until DMEM finishes?
How would IMEM know DMEM is writing?

Question: What can a person (computer) do,
given a set of instructions to follow.

--- Works for any person (unambiguos)
--- Input is a string of symbols
 (from a finite set of symbols)
--- Output is a string (from same set)

--- Read a symbol
--- Look up rule
--- Write a symbol
--- Move tape
--- Change state

A Few Details

--- Starts in a particular state
--- Stops in a "Halting" state, or not at all
--- Can go forever
--- Can always get more tape:
 --- more input (or maybe finite input)
 --- more output

What Is A State (of mind)?

Version-1:
--- I know I am doing addition
--- I know I am adding the 5th column
--- I know I have seen the number 5 in the top row
--- I know I have seen the number 2 in the bottom row

Version-2:
--- Physical state is momentary value of all measurables
--- State change is affected by interactions w/ environment
--- Instantaneous environmental impact is current symbol
--- Rule-based state change
--- Instantaneous effect on environment is output symbol

Big idea: don't build new hardware,

Build one simulator

For every other (new/special) machine,
describe and simulate.

Build one simulator, and many descriptions.

--- describing == programming
--- simulating == executing

Language for describing TMs?

--- The rule table describes a TM. Simple!
--- Or, devise a programming language. More productive.
--- Is the language Turing complete (can describe any TM)?

A Turing Machine
 that
Simulates other Turing Machines

Every computation can be modeled
as some Turing Machine.

Doing computation X means
building and running TM-x.

Simultation-step-1:
 Find M's R/W location, read input symbol, A

Simulation-step-2:
 Find M's state, S

Simulation-step-3:
 Find Rule Table

Simulation-step-4:
 Search for rule for State S
 Check if input == A
 If S and A do not match Rule, find next Rule

Simulation-step-5:
 Find Rule's output symbol, B
 Find R/W head's cell
 Write B

Simulation-step-6:
 Find Rule's move G = (L or R)
 Find R/W head's cell
 Write R/W head location mark to L or R cell

Simulation-step-7:
 Find Rule's next-State, N
 Find M's current-state cell
 Write N

Eham: Computation is everywhere.
Drah: Where?
E: Everywhere!
D: A car crash?
E: Yes.
D: A doll house?
E: Yes.
D: Me?
E: Yes.
D: What is the same about them?
E: They all change.
D: So, computation is change?
E: Yes.
D: Everything changes, so
computation is everywhere?
E: Yes.
D: What is computation?
E: Change.

D: So, everything changes, and because
everything changes, everything is
computation, and computation is change.
E: Yes!
D: Oh.
E: You see, it is really quite simple.
D: How simple?
E: There is a model.
D: A model?
E: Yes.
D: How is there a model?
E: Things are one way, then they are
another.
D: And that means there is a model?
E: Exactly.
D: How do I know there is a model?
E: That is an existence proof.
D: What is?
E: I just said there is a model, didn't I?

D: And a model means things are one
way, then another.
E: Now you've got it.
D: Isn't that the same as change?
E: Quite right.
D: So, a model is change and change is
computation and change is computation
because there is a model?
E: See, now you're getting the hang of it.
D: Oh.

D: I am a computer?
E: Without a doubt. When you change, which you do
constantly, you are computation.
D: Then, I'm not me before, nor me after, but I'm me as I
change?
E: Computation is everything and everywhere, all things
are changing, you are changing, you are computation.
D: What if I don't change?
E: Everything changes.
D: So, there is nothing that doesn't change?
E: That's right, nothing doesn't change.
D: So nothing isn't computation. Does nothing exist?
E: Of course nothing exists. There is zero, zero exists.

D: So, what is a computer?
E: Something that does computation.
D: Doing computation?
E: That's it, computing.
D: So, computers compute?
E: Obviously.
D: And computing is change?
E: What else could it be?
D: Everything changes, so everything is a
computer?
E: Yes, absolutely.

D: So 0 is not computation?
E: That's right, because 0 is nothing. If it were something,
then it would be computation, because all things change.
D: So, does 1 exist.
E: As surely as anything exists, as certainly as zero exists.
D: But they don't change, 0 and 1, I mean?
E: Of course not.
D: Then something exists which is not computation?
E: Absolutely.
D: But, if computation is everywhere, where are 0 and 1?
E: Right there.
D: Where? On the ceiling?
E: Of course. See that thing there? There is only 1 of them
there.
D: So that's the existence of 1?
E: What could be clearer?

