
basicArchitectures

What we are looking for

-- A general design/organization

-- Some concept of generality and completeness

-- A completely abstract view of machines
    a definition
    a completely (?) general framework

-- An introduction to a common, standard ISA

-- An introduction to the LC3

Getting in tune with the current scene, 
listen to 

Dave Patterson:

        Computer Architecture is Back: 
        Parallel Computing Landscape

http://www.youtube.com/watch?v=On-k-E5HpcQ

( input = αααα  output = λλλλ   move = L )
 State  input   output move   Next State

Completely General, Abstract

Any computing machine (?)
    --- Define "Computation"

Can prove mathematical statements
    --- Define Algorithm
    --- The UN-computable
    --- Limits on Time/Space

Description of machine M:
--- M's states
--- M's symbols
--- M's rules



We need a language rich enough to describe 

 ---- any function: next-state or data operation
 ---- read/write operations
 ---- state change for M

with this we can describe ANY machine, and simulate it.

 Description
  of machine
       M
   in some
  "language"

We need:
1) To keep track of M's state
2) read/write data symbols
3) data operations
4) next-state function F(state, input)

nand( a, b )   ===>  f
nand( c, d )   ===>  e

Program describes completely, how
--- Machine M changes state
--- next state depends on current state and current input
--- output depends on input and M's current state
--- M "moves" to another location to read next symbol

Building calculating 
machines

-- SSEM
-- Manchester Mark 1 
-- Ferranti Mark 1
-- IAS
-- ENIAC



Need some way for the machine to 
"know" the outcome: go left or right.

NB--It's not obvious what capabilities we need. 
Can we find a model that could tell us that?

Memory == an array
address == array index.
Two Operations:

store data:          in ==> Memory[ address ]

retrieve data:     out <== Memory[ address ]

Recreate branched graph 
in linear memory. 

Execution follows a path 
through graph.

ADD           SUB       
MULTIPY   DIVIDE 
              ...     

Load Reg, Address
Store Reg, Address

Push Reg
Pop Reg

Necessary for TM completeness:
--- Changing M's state
    --- Go to other part of description
        (depending on data)

Jmpz Addr1 

 Jmp 



Two devices cannot both set the 
signal value on a wire at the same 
time. E.g., A says it's "0" and C says 
it's "1". 

BUS is shared between devices.
Controller enables exactly one at a time; e.g.,

Busses (because you see them here and there)

Turing View of a Computer

--- a machine can be described as a table of rules
    ( current-state, input ===> output, next-state)

--- input, a symbol, is read from "memory"
--- a rule is applied according to
        --- what the current state is
        --- which symbol was read
--- output, a symbol, goes to "memory"
--- the machine changes state
--- repeat

von Neumann View of a Computer

--- a "program" is a sequence of 
       step-by-step instructions

--- instructions are read from "memory"
--- the instruction is read into a "register"
--- a  controller "executes" the instruction
    --- data is read from "memory"
    --- a "register" remembers what was read
    --- an operation changes the data
    --- a register stores the result
    --- the result is written to "memory"
--- repeat

                                            How they correspond:

    Turing                                                             von Neumann

        a State                                                              A section of the program
        a change of state                                              jumping to a different section
        a rule's output part                                            a section that produces a new output
        a rule's state-change part                                 a section that calculates the next jump

signals travel on a wire:    
          A sends a "0" to B.

C cannot use same wire, 
even at a different time?
A's output tied to C's output?

A is connected to BUS
B is disconnected from BUS



A "tri-state buffer"

G
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Passes a "0" cleanly

Passes a "1" cleanly

E = 1 : Passes 1 or 0 cleanly (inverted)

E = 0 : Passes neither, no conduction,
                       high impedance

in == 0  then  out == 1
in == 1  then  out == 0

                  Verilog wire signal values

X -- unknown (for various reasons)    1 -- voltage for "1"
Z -- high impedance                          0 -- voltage for "0"



   Machine Cycle
================
Fetch instruction
Decode instruction
Evaluate address
Fetch operands
Execute instruction
Store result

MAR, memory 
address register:

which memory 
cell is accessed.

MDR, memory 
data register:

data sent to, or 
received from 
memory.

sets control signals 
as needed,
orchestrates



PHASE:
Fetch instruction

-- 1st step, state 18

PC    <== PC+1
MAR <== PC

(Happens in parallel,
finalized when clock 
pulse arrives.)



(continue)
Fetch instruction, first step:

Load MAR w/ address in PC

FSM Controller must set 
signal values for State-18:

GatePC   <== 1'b1
PCMUX   <== 2'b00
LD_PC    <== 1'b1
LD_MAR <== 1'b1

An instruction,
one word,
one symbol
of program.

Fetch-instruction,
2nd step, state 33



Fetch-instruction,
3rd step

Instruction is 
remembered,
 ie., "registered" in
IR

Control signals for 
state-35:

  GateMDR <== 1'b1
  LD_IR      <== 1'b1

This completes the Fetch-instruction phase.

Overall effects:

    IR  <== 16'b 1011 0011 0101 0000   (16-bit instruction, from memory)    

    PC <== 16'b 0001 0010 0011 0101   (a 16-bit memory address)

Or, to put it in other ways:

    IR  <== 16'h B350
    IR <== Mem[ 16'h 1234 ] )
    PC <== 16'h 1235



Decode phase

Next state of controller
is determined by

    IR[ 15 : 12 ]

the "opcode" portion of the 
instruction. E.g.,

    IR[ 15 : 12 ] = 4'b1011

next state is State-11
( or, State-B, in hex )



Evaluate Address phase

Calculated in addrArith.
Sources for calculation are:

--- RegFile (a register)
--- PC
--- IR

Resulting address sent to: 

--- PC,       change state 
   jump to different part of program
 ( instructions JMP, BR, INT, TRAP )

OR

--- MAR,    data transfer
              memory-to-register
              register-to-memory
             ( instructions LDR, STR )



D-FF D-FF D-FF D-FF

Some registers (flip-flops),
and a way to select,
--- which to output
--- which to write

N 1-bit D-FlipFlops

D-FF D-FF D-FF D-FF

Holds a 4-bit "word"

E=1: data D written to FF on next clock pulse

data output
--- out_1
--- out_2
data select
--- Sel_1
--- Sel_2

data input
--- in
write select
-- write_Sel
read/write control
--- RW

clock input
--- clock

4 N-bit registers



move data from memory 
to a register (e.g., LD)

OR

send data to ALU  
from a register 
or some of the IR's bits

LC3's "load from memory" 
instructions (LD, LDR, LDI) do 
nothing after copying from the 
MDR to a register.

ALU operation and making 
result available on BUS
( e.g., ADD, SUB, NOT)

OR

 Load the PC with an 
address calculated in 
Evaluate Address phase, or 
from another source (e.g., 
interrupt vector).

Instructions that do (2.) are 
JMP, BR, TRAP, as well as 
system generated action 
from hardware, interrupts 
and exceptions.



--- No instruction uses every phase.

--- Multiple instructions could be simultaneously in 
different phases. (How about same phase?)

--- Some phases must wait for the previous phase to 
complete (eg., memory access)

write ALU result 
to a register.

OR

copy 
from source register 
to destination 
register.

OR

copy 
from register
to memory location.

   Machine Cycle
================
Fetch instruction
Decode instruction
Evaluate address
Fetch operands
Execute instruction
Store result



Two memories, one for instructions, one for data.
Layed out as a "pipeline" ==> more parallelism.

How do we map our instruction-execution phases to 
this architecture?



LC4, Only ONE cycle per instruction

--- Two memories, instructions and data
--- controller sets all control signals for proper flow
--- Does not need IR, instruction memory output is stable

vs.

LC3, many cycles per instruction

--- One memory, used first for instruction, then data
--- controller handles parts of operation at a time
--- Needs IR to remember instruction



We focus on the processor.

System includes many other devices:
--- memory controller, memory banks
--- keyboard, display
--- disk drives
--- I/O bus controllers
--- network interfaces
--- communication channels for video
--- GPUs
--- etc.

At large scale, 
system is von Neumann Architecture.
At small scale,
processor might be Harvard Architecture.

Controller

Datapath
-- registers
-- ALU

Processors can be implement either way.

Systems are typically von Neumann.

Processors can be either von Neumann or Harvard (Intel x86, Pentium, ...).

Enhancements (?)
--- more processor hardware, built-in functionality (caches, branch prediction, ...)
--- multiple processors
--- simpler, low-power
--- wider (more bits per register)
--- wider (copied functional units)
--- wider (multiple, different functional units)

Instruction
memory
(cache)

Data
memory
(cache)



address

000

001

010

011

100

101

110

111

A cache is a small memory.

Cache Memory Read Operation

    Get address input.

    Search all cache cells {
            if address == cell's tag, 
                   send cell's data to output
            else
                    try next cell
     }
     if Search failed {
             cache "miss";
             get data from Main Memory;
             write tag+data into cell;
             send data to output.
     }

Writes are similar, but data goes the other way. 

Data is transfered between cache and main 
memory as needed.

Cache is fast, main memory is slow.

Cache ABSTRACTION provides illusion that,

    ---- Access is just memory access:
         address goes in, data comes out.

    ---- Two Memories, IMEM and DMEM:
          separate, independent accesses

    ---- Single, unified, von Neumann memory:
          one memory, one address space.

Advantages

---- Memory access can appear to be very fast, 
when in fact it is very slow: If data is reused, 
cache can respond immediately, without waiting 
for slow main memory response.

---- Two caches allow two memory accesses in 
parallel (simultaneously).

Cache Operation Complications
Handling the new problems created:

---- tag+data is not in cache?
Must stall the processor when cache misses? 
How do we stall a processor?

---- write operation?
Will cache and main memory data differ?
Should both be written at same time?
Should we wait and write main memory later?

--- overlapping accesses from both caches?
IMEM reads instruction that DMEM is writing?
Should IMEM wait until DMEM finishes?
How would IMEM know DMEM is writing?



Question: What can a person (computer) do, 
given a set of instructions to follow.

--- Works for any person (unambiguos)
--- Input is a string of symbols 
      (from a finite set of symbols)
--- Output is a string (from same set)

--- Read a symbol
--- Look up rule
--- Write a symbol
--- Move tape
--- Change state

A Few Details

--- Starts in a particular state
--- Stops in a "Halting" state, or not at all
--- Can go forever
--- Can always get more tape:
       --- more input (or maybe finite input)
       --- more output

What Is A State (of mind)?

Version-1:
--- I know I am doing addition
--- I know I am adding the 5th column
--- I know I have seen the number 5 in the top row
--- I know I have seen the number 2 in the bottom row

Version-2:
--- Physical state is momentary value of all measurables
--- State change is affected by interactions w/ environment
--- Instantaneous environmental impact is current symbol
--- Rule-based state change
--- Instantaneous effect on environment is output symbol



Big idea: don't build new hardware, 

Build one simulator

For every other (new/special) machine, 
describe and simulate.

Build one simulator, and many descriptions.

--- describing == programming
--- simulating == executing

Language for describing TMs?

--- The rule table describes a TM. Simple!
--- Or, devise a programming language. More productive.
--- Is the language Turing complete (can describe any TM)?

A Turing Machine
          that 
Simulates other Turing Machines

Every computation can be modeled 
as some Turing Machine.

Doing computation X means
building and running TM-x.

Simultation-step-1:
    Find M's R/W location, read input symbol, A

Simulation-step-2:
    Find M's state, S

Simulation-step-3:
    Find Rule Table

Simulation-step-4:
    Search for rule for State S
    Check if input == A
    If S and A do not match Rule, find next Rule

Simulation-step-5:
    Find Rule's output symbol, B
    Find R/W head's cell
    Write B

Simulation-step-6:
    Find Rule's move G = (L or R)
    Find R/W head's cell
    Write R/W head location mark to L or R cell

Simulation-step-7:
    Find Rule's next-State, N
    Find M's current-state cell
    Write N



Eham: Computation is everywhere.
Drah: Where?
E: Everywhere!
D: A car crash?
E: Yes.
D: A doll house?
E: Yes.
D: Me?
E: Yes.
D: What is the same about them?
E: They all change.
D: So, computation is change?
E: Yes.
D: Everything changes, so 
computation is everywhere?
E: Yes.
D: What is computation?
E: Change.

D: So, everything changes, and because 
everything changes, everything is 
computation, and computation is change.
E: Yes!
D: Oh.
E: You see, it is really quite simple.
D: How simple?
E: There is a model.
D: A model?
E: Yes.
D: How is there a model?
E: Things are one way, then they are 
another.
D: And that means there is a model?
E: Exactly.
D: How do I know there is a model?
E: That is an existence proof.
D: What is?
E: I just said there is a model, didn't I?

D: And a model means things are one 
way, then another.
E: Now you've got it.
D: Isn't that the same as change?
E: Quite right.
D: So, a model is change and change is 
computation and change is computation 
because there is a model?
E: See, now you're getting the hang of it.
D: Oh.



D: I am a computer?
E: Without a doubt. When you change, which you do 
constantly, you are computation.
D: Then, I'm not me before, nor me after, but I'm me as I 
change?
E: Computation is everything and everywhere, all things 
are changing, you are changing, you are computation.
D: What if I don't change?
E: Everything changes.
D: So, there is nothing that doesn't change?
E: That's right, nothing doesn't change.
D: So nothing isn't computation. Does nothing exist?
E: Of course nothing exists. There is zero, zero exists.

D: So, what is a computer?
E: Something that does computation.
D: Doing computation?
E: That's it, computing.
D: So, computers compute?
E: Obviously.
D: And computing is change?
E: What else could it be?
D: Everything changes, so everything is a 
computer?
E: Yes, absolutely.

D: So 0 is not computation?
E: That's right, because 0 is nothing. If it were something, 
then it would be computation, because all things change.
D: So, does 1 exist.
E: As surely as anything exists, as certainly as zero exists.
D: But they don't change, 0 and 1, I mean?
E: Of course not.
D: Then something exists which is not computation?
E: Absolutely.
D: But, if computation is everywhere, where are 0 and 1?
E: Right there.
D: Where? On the ceiling?
E: Of course. See that thing there? There is only 1 of them 
there.
D: So that's the existence of 1?
E: What could be clearer?




