basicArchitectures

What we are looking for
-- A general design/organization
-- Some concept of generality and completeness
-- A completely abstract view of machines
a definition
a completely (?) general framework

-- An introduction to a common, standard ISA

-- An introduction to the LC3

Getting in tune with the current scene,
listen to

Dave Patterson:

Computer Architecture is Back:
Parallel Computing Landscape

http://www.youtube.com/watch?v=0n-k-E5HpcQ

Completely General, Abstract

Any computing machine (?)
--- Define "Computation”
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Can prove mathematical statements
--- Define Algorithm
--- The UN-computable
--- Limits on Time/Space

( input = O output=A move =L )
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Description of machine M:
--- M's states

--- M's symbols

--- M's rules



Von Neumann

Simufife. M

Building calculating
machines

-- SSEM

-- Manchester Mark 1
-- Ferranti Mark 1

-- 1AS

-- ENIAC
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Program describes completely, how
--- Machine M changes state

--- next state depends on current state and current input
--- output depends on input and M's current state

--- M "moves" to another location to read next symbol
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We need:

1) To keep track of M's state

2) read/write data symbols
3) data operations
4)

s, what?
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next-state function F(state, input)
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Stek- 2,
. Description

of machine
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nand(a,b) ===> f
nand(c,d) ===> e
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in some
"language"

We need a language rich enough to describe

---- any function: next-state or data operation

---- read/write operations

---- state change for M

with this we can describe ANY machine, and simulate it.



Memory == an array
address == array index.
Two Operations:

store data: in ==> Memory[ address ]

retrieve data: out <== Memory[ address ]

Omd, Whal else ?

NB--It's not obvious what capabilities we need.
Can we find a model that could tell us that?

ADD SUB

Conweniene/ ( muLTipY DIVIDE
perfor mance

recd / write Sy,

sTack operd‘skv\s

Push Reg
Pop Reg

Necessary for TM completeness:
--- Changing M's state
--- Go to other part of description
(depending on data)
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Recreate branched graph
in linear memory.

Execution follows a path
through graph.

Load Reg, Address
Store Reg, Address
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Need some way for the machine to
"know" the outcome: go left or right.

descrplion
of C




Turing View of a Computer

--- a machine can be described as a table of rules
( current-state, input ===> output, next-state)

--- input, a symbol, is read from "memory"
--- arule is applied according to
--- what the current state is
--- which symbol was read
--- output, a symbol, goes to "memory"
--- the machine changes state

von Neumann View of a Computer

--- a "program” is a sequence of
step-by-step instructions

--- instructions are read from "memory"

--- the instruction is read into a "register"

--- a controller "executes" the instruction
--- data is read from "memory"
--- a "reqister" remembers what was read
--- an operation changes the data

--- repeat --- a register stores the result
--- the result is written to "memory"
--- repeat
How they correspond:
Turing von Neumann
a State A section of the program

a change of state
a rule's output part
a rule's state-change part

jumping to a different section
a section that produces a new output
a section that calculates the next jump

Busses (because you see them here and there)

signals travel on a wire:
A sends a "0" to B.

C cannot use same wire,
even at a different time?

A's output tied to C's output?

device A
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Two devices cannot both set the
signal value on a wire at the same
time. E.g., A says it's "0" and C says

it's "1".
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device 2 N 1//

device

BUS is shared between devices.
Controller enables exactly one at a time; e.g.,

Eg
BVS

device B

E, <« " Ais connected to BUS
E . \\O” B is disconnected from BUS
B8




A "tri-state buffer" C IV\ 0 S
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OUT E =1 : Passes 1 or 0 cleanly (inverted)
. E = 0 : Passes neither, no conduction,
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Verilog wire signal values

X -- unknown (for various reasons) 1 -- voltage for "1"
Z -- high impedance 0 -- voltage for "0"




BASIC
UNITS

sets control signals
as needed,
orchestrates

Processor «——s MClnofj LT /o

Rey File

BVS

'"\cmomj

ADDR

MAR, memory
address regqister:

which memory
cell is accessed.

m
MDR, memory
data register:
OuT
data sent to, or
R/w received from
memory.
Machine Cycle
_ Fetch instruction
eéxecuvlion Decode instruction
Ph 4ses Evaluate address

Fetch operands
Execute instruction
Store result

Forevcr/ or.?



LC3,

a von Neumann archiTecture
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PHASE:
Fetch instruction

-- 1st step, state 18

PC <==PC+1
MAR <==PC

(Happens in parallel,
finalized when clock
pulse arrives.)

FSM  Covifraller
Stsle, , 18



(continue)
Fetch instruction, first step:

‘ Load MAR w/ address in PC
V4

MAK — PC FSM Controller must set

signal values for State-18:

GatePC <==1"b1
PCMUX <==2'b00
LD PC <==1'D1
LD _MAR <== 1'b1

sys_bys[15:0]

| Fetch-instruction,
S : 2nd step, state 33 33
—Doy — | MDR < Mew
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An instruction,

# TO 1011 001 8] 0] 9040 one word,

S one symbol
MEMORY UNIT F M of program.




Covtime To next stite when R 1

(2 D D_fi_1& L
9!’;‘ D[ IR
R=
%D}JQJ? (
b uy D_ff_16 A=
. sy T L ‘ Fetch-instruction,
e 3rd step
Instruction is
remembered,
This completes the Fetch-instruction phase. ie., "registered" in
IR
Overall effects:
Control signals for
IR <==16'b 1011 0011 0101 0000 (16-bit instruction, from memory) state-35:
GateMDR <== 1'b1
PC <==16'b 0001 0010 0011 0101 (a 16-bit memory address) LD_IR  <==1'b1

Or, to put it in other ways:

IR <== 16'h B350
IR <== Mem[ 16'h 1234 ])
PC <== 16'h 1235



Decode P\'\dse, Nha'f' msf’rucf;bn is This?
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Decode phase
ouT Next state of controller
> . is determined by
l,
IR Es:ll] =" OPCOAQ / IR[15:12]

the "opcode" portion of the
instruction. E.g.,

IR[15:12] =4'b1011

next state is State-11
(or, State-B, in hex)




Evavate Address Phase

Evaluate Address phase

Calculated in addrArith.
Sources for calculation are:

--- RegFile (a register)
-- PC
-- IR

Resulting address sent to:

--- PC, change state
jump to different part of program
(instructions JMP, BR, INT, TRAP )

OR

--- MAR, data transfer
memory-to-register
register-to-memory
(instructions LDR, STR)




Some registers (flip-flops),
and a way to select,

--- which to output

--- which to write

whats a /?ejis‘]'er fFile ?

N 1-bit D-FlipFlops

a reg is+er ?
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Fetch Operands Phase

BUS . { .\
Req File
J
i
MDR [
Memot},

&—move data from memory

to a register (e.g., LD)
OR

send data to ALU
from a register
or some of the IR's bits

——>

LC3's "load from memory"
instructions (LD, LDR, LDI) do
nothing after copying from the
MDR to a register.

EXQC.U-'-c Pl\age

Bvs

ALU operation and making
result available on BUS
(e.g., ADD, SUB, NOT)

(
L
PC

OR
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|

adde Acith

Load the PC with an
address calculated in
é~Evaluate Address phase, or

from another source (e.g.,
interrupt vector).

Instructions that do (2.) are
JMP, BR, TRAP, as well as
system generated action
from hardware, interrupts
and exceptions.

IR

Regy File

SRCA, SRCY

s al

Req File

SRCI, SRCY
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to a register.

write ALU result =, ch F’de m_]
¥

OR rgjuier
\ \ o SRCD. SRC

i . copy
Rej File in le. from source register
defhha\hér’a % to destination
rejis'fer = register. N\ / /
Soufce A\.U )
rejlsjfer SRCA, SREY k)
OR
ALV )
copy

from register
to memory location.

Reg File

Sovrce PN fxec&"\'on Pl‘mges
fejiSTQ( SRCQ. SRGY Machine Cycle
[ Fetch instruction
Decode instruction
A\..U Evaluate address

Fetch operands
Execute instruction

{_) Store result
1

__|MOR MAR,
,——___l --- No instruction uses every phase.
L_ pddr --- Multiple instructions could be simultaneously in
N memor j different phases. (How about same phase?)
--- Some phases must wait for the previous phase to

complete (eg., memory access)




Two memories, one for instructions, one for data.
Ha(Va(A A,VLL\.l eclvre Layed out as a "pipeline" == i

> more parallelism.
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How do we map our instruction-execution phases to
this architecture?
LC ’7(  Harvard Acchitefure version of L.C3
‘ I\‘-—‘ TakeBR SRZouf15]
Deoode
B+ sr 5:12] i -
S T 4—L| L ALU
regFile _
s nan{119] # ASR1 SRicwfe Q . ] D_MEM
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LC4, Only ONE cycle per instruction

--- Two memories, instructions and data

--- controller sets all control signals for proper flow

--- Does not need IR, instruction memory output is stable
VS.

LC3, many cycles per instruction

--- One memory, used first for instruction, then data

--- controller handles parts of operation at a time
--- Needs IR to remember instruction



Sv)s‘\‘em (vam Nevmann)

Processor
Controller
Instruction Datapath Data
memory -- registers ¢ memory
(cache) -- ALU (cache)
\
/

7 MEN"‘?

We focus on the processor.

System includes many other devices:
--- memory controller, memory banks
--- keyboard, display

--- disk drives

--- 1/0O bus controllers

--- network interfaces

--- communication channels for video
--- GPUs

--- efc.

2 basic ArclniTec'l'ures

Processors can be implement either way.

Systems are typically von Neumann.

>

(,oﬁh‘ o"&‘

At large scale,
system is von Neumann Architecture.
At small scale,

processor might be Harvard Architecture.

/0 I/o RUS

Mohikr

— von Neumany
— Harvard

Processors can be either von Neumann or Harvard (Intel x86, Pentium, ...).

Enhancements (?)

--- more processor hardware, built-in functionality (caches, branch prediction, ...)

--- multiple processors

--- simpler, low-power

--- wider (more bits per register)

--- wider (copied functional units)

--- wider (multiple, different functional units)



what’s 4 cache T main

MCMDF‘}

address

MAR Cache Memer | J23Y 000

110 | ol 5475 | oo
010 | 9ABC 9ABC 010

ec P01 | 5478 DEFO | O

100
MDR, | 23y
101
A cache is a small memory. 5478
110
Cache Memory Read Operation 9 A BC
111
Get address input. DE E )a_J_
Search all cache cells { J&TA, lé‘k‘-” *
if address == cell's tag, L«)MI}S Un ﬂ,
send cell's data to output W
else Advantages
try next cell
_} ] ---- Memory access can appear to be very fast,
if Search failed { when in fact it is very slow: If data is reused,
cache "miss"; _ cache can respond immediately, without waiting
get data from Main Memory; for slow main memory response.
write tag+data into cell;
send data to output. ---- Two caches allow two memory accesses in
} parallel (simultaneously).
Writes are similar, but data goes the other way. Cache Operation Complications

Handling the new problems created:
Data is transfered between cache and main

memory as needed. ---- tag+data is not in cache?
_ Must stall the processor when cache misses?
Cache is faSt, main memory IS slow. How do we stall a processor?
Cache ABSTRACTION prOVideS illusion that, ---= WFrite operation?
o Will cache and main memory data differ?
---- Access is just memory access: Should both be written at same time?
address goes in, data comes out. Should we wait and write main memory later?
---- Two Memories, IMEM and DMEM: --- overlapping accesses from both caches?
separate, independent accesses IMEM reads instruction that DMEM is writing?
, -~ Should IMEM wait until DMEM finishes?
---- Single, unified, von Neumann memory: How would IMEM know DMEM is writing?

one memory, one address space.



Question: What can a person (computer) do,

--- Works for any person (unambiguos)

T\) Y] n W\a(_ h\h e COV\ ce ~t given a set of instructions to follow.
9 P

--- Input is a string of symbols

ﬂcim"l't Sef]‘ of rulest
(sTefe, syw bol, action)

Finile ﬂi{jcwﬁ}

STales oF wind

--- Read a symbol
--- Look up rule
--- Write a symbol
--- Move tape

--- Change state

AN
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Rules /Pracedure
NAA—— —~—— —
A~ ~\rv -~
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Ciiad

cowmpuler
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RN
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| can Se¢ CUWY\*

(from a finite set of symbols)
--- Output is a string (from same set)

R/w TAPE
¢ urrer& Tﬂf ¢ C(’,u l |
Currcy_& g7W\ *

hove S {f\\'y\‘,'{'g Yyhxbolf

Vhe\/e R

cell Sj\mkol)

Can overwrite
C U'"V(Y\+ CQ”-

A Few Details

--- Starts in a particular state
--- Stops in a "Halting" state, or not at all
--- Can go forever
--- Can always get more tape:
--- more input (or maybe finite input)
--- more output

P C/eék/y} ﬁoﬁ’)’ Lejona{ /KUYMV\
Capa.bu‘ls'fl?.’)’, b ut j"o‘} As
4 )cuMJAWIenTJ &.()SWQOL(M.

An examrle: add

] \ - ijar'f uf)-r‘fjH

+34 -See S
What Is A State (of mind)? é - write. “O‘HHM
Version-1: ~ Wove Joum
- | know | am doing addition ~ next shefe: “seen &
--- | know | am adding the 5th column — See Vy”
--- | know | have seen the number 5 in the top row - write: m‘H‘ ('m&
---  know | have seen the number 2 in the bottom row - Weve clbom
Version-2: ~ next stake: “seen A &Y "
--- Physical state is momentary value of all measurables ~see N, " (blonk
--- State change is affected by interactions w/ environment e 'T‘ (blank)
--- Instantaneous environmental impact is current symbol - wr'("{: b

--- Rule-based state change A
--- Instantaneous effect on environment is output symbol = mvevp- E/ﬁ

o 0o ©
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A Turing Machine

Build one simulator

that describe and simulate.

Simulates other Turing Machines

Every computation can be modeled
as some Turing Machine.

Doing computation X means
building and running TM-x.

Big idea: don't build new hardware,

For every other (new/special) machine,

Build one simulator, and many descriptions.
--- describing == programming
--- simulating == executing

Language for describing TMs?

--- The rule table describes a TM. Simple!

--- Or, devise a programming language. More productive.
--- Is the language Turing complete (can describe any TM)?

UTM

Simultation-step-1:
Find M's R/W location, read input symbol, A

Simulation-step-2:
Find M's state, S

Simulation-step-3:
Find Rule Table

Simulation-step-4:
Search for rule for State S
Check if input ==

If S and A do not match Rule, find next Rule >

Simulation-step-5:
Find Rule's output symbol, B
Find R/W head's cell
Write B

Simulation-step-6:
Find Rule's move G = (L or R)
Find R/W head's cell
Write R/W head location mark to L or R cell

Simulation-step-7:
Find Rule's next-State, N
Find M's current-state cell
Write N

role #

rule

rule n-2

rule w-

rule N

sTde

> S

Sé

synbal

s1

S

UTAM's Ta.P e

Aescrip+('oh

of M,

M rule
TAU(’,

M’s
Simu\c}ei

T&Pe



Eham: Computation is everywhere.
Drah: Where?

: Everywhere!

: A car crash?

: Yes.

: A doll house?

: Yes.

: Me?

: Yes.

: What is the same about them?
: They all change.

: So, computation is change?
: Yes.

: Everything changes, so
computation is everywhere?
/£ E: Yes.

D: What is computation?
D: So, everything changes, and because

Compifitio o
Mcywhm :

OmomomomoOmom

E: Change.

everything changes, everything is

computation, and computation is change.
: Yes! . /'/ZZ,
: Oh.
: You see, it is really quite simple. .

: How simple?
: There is a model.

A model?
- Yes.
: How is there a model?
: Things are one way, then they are /
another. J \

MOMUOMOMO M

\

=0

D: And that means there is a model?
E: Exactly.

D: How do | know there is a model?
E: That is an existence proof.

D: What is?

E: I just said there is a model, didn't [?

D: And a model means things are one
way, then another.

E: Now you've got it.

D: Isn't that the same as change?

E: Quite right.

D: So, a model is change and change is

/ computation and change is computation
)) because there is a model?
E: See, now you're getting the hang of it.

\m{/ O/\" D: Oh.

\u;.w



: So, what is a computer?

: Something that does computation.
: Doing computation?

: That's it, computing.

: So, computers compute?

oOmomomomo

D: I am a computer?

E: Without a doubt. When you change, which you do
constantly, you are computation.

D: Then, I'm not me before, nor me after, but I'm me as |
change?

E: Computation is everything and everywhere, all things
are changing, you are changing, you are computation.
D: What if | don't change?

E: Everything changes.

D: So, there is nothing that doesn't change?

E: That's right, nothing doesn't change.

D: So nothing isn't computation. Does nothing exist?

E: Of course nothing exists. There is zero, zero exists.

: Obviously.
: And computing is change?
: What else could it be?
: Everything changes, so everything is a
computer? '
E: Yes, absolutely. [/
C2

v/

£ @

D: So 0 is not computation?
E: That's right, because 0 is nothing. If it were something,

then it would be computation, because all things change.
D: So, does 1 exist.
E: As surely as anything exists, as certainly as zero exists.
D: But they don't change, 0 and 1, | mean?
E: Of course not.
D: Then something exists which is not computation?
E: Absolutely.
J D: But, if computation is everywhere, where are 0 and 17?
O E: Right there.
D: Where? On the ceiling?
E: Of course. See that thing there? There is only 1 of them
there.

D: So that's the existence of 1?
E: What could be clearer?






