
(2.) Make an upper-level cell "test1" and drop
in a mux icon. Attach wires to its ports. Name
the wires, A, B, sel, and Y. Drop in a verilog
code box (^Components.Misc.VerilogCode).
In the verilog box, declare Asrc, Bsrc, and
SELsrc as "reg" type, and "assign" them to A,
B, and sel. Then, write verilog code to effect
the following time-line sequence:

A=0, B=0, sel=0
A=1
A=0
A=1
A=0
A=0, B=1, sel=0
A=1
A=0
A=1
A=0

$display the values for A, B, sel, and Y that
result. What is the purpose of "sel"? What
would happen if you swapped the roles of A
and B, setting sel=1?

NB--Ignore warnings for the GND and Vdd
ports. They are not used, but are just there to
remind you that 74' chips need power and
ground connections.

Lec-2-HW-2-2X1mux

(1.) At right is a drawing of a logic circuit. Recreate it in
Electric yourself using TTL.jelib. That is, open your
lib/TTL.jelib, create a new cell "mux", drop in appropriate
icons from TTL.jelib, and connect wires to implement an
equivalent circuit. Make A, B, sel, and Y exports (input,
input, input, output). Make mux's icon view.

NB--You cannot attach a port to an icon's port, you need
wire and a pin.

A side comment
Electric has a BUFF, which can be turned into a NOT:

1.) Select the BUFF's output pin (crosshair)
2.) extend a wire {cell area}^
3.) Select the BUFF's output pin, again
4.)
 ^Edit.TechnologySpecific.TogglePortNegation

Also works for NAND, NOR. Do not put a bubble on
an input pin.
(Not that you need this for this exercise: you already
have the 7404.)

NB--Recall that you can drive an input wire or bus by
declaring a "reg" to drive it. For instance, "reg Asrc"
can drive wire "A", and "Csrc" can drive bus C:

 wire A;
 wire [1:0] C;
 reg Asrc;
 reg [1:0] Csrc;
 assign A = Asrc;
 assign C = Csrc;

 initial begin
 Asrc = 1;
 Csrc = 2'b01; //--- C[1] <== 0
 //--- C[0] <== 1
 ...
 end

(3.) There is an alternate way of looking at the same circuit. Make a new cell, test2, and
drop in a mux icon. Attach wires D0 to the A port, D1 to the B port, IN to the sel port, and
OUT to the Y port. Write verilog code for this sequence:

D0 = 1, D1 = 0
IN = 0
IN = 1
IN = 0
IN = 1

and $display all signals. Treating OUT as a function of IN, what function is implemented
by the circuit? Repeat the above, but set D0 = 0 and D1 = 1. Now what function is
implemented?

What to turn in:

Turn in a cover sheet with answers to the above questions. Include a diagram of
your breadboard circuit and comments on how well it conforms to the intended
design (the logic circuit shown at top and your verilog circuit simulation). Use svn to
check in the changes you made to TTL.jelib.

(4.) Implement your circuit on your breadboard. Check that it functions as your testbench
code says it should.

HINT: Make delays of at least #2 between assignments. Here's an "always" for $display()

always @(A or B or sel) begin
 #1 $display("time=%0d, A=%b, B=%b, sel=%b, Y=%b", $time, A, B, sel, Y);
end

