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A 2-input eXclusive-OR (XOR) is defined by this truth
table:

A  B     Y
________
0   0     0
0   1     1
1   0     1
1   1     0

where A and B are inputs, and Y is the output. A 3-
input XOR is the functional composition of two 2-
input XORs:

XOR( A, B, C )  ==  XOR(    XOR( A, B ) ,   C  )

There are two interpretations of XOR:

     1) NOT-EQUAL( A, B )
          ==  1    if A is not the same as B;

     2) BIT-FLIP( A, B )
          ==  NOT( A )  if B == 1; 
          ==     A          if B == 0.

A CMOS circuit consists of two connected complementary 
sub-circuits:

     1) P-type transistors connected to logic 1
     2) N-type transistors connected to logic 0.

    P-type transistors conduct when their input is logic 0.
    N-type transistors conduct when their input is logic 1.

At left is a CMOS circuit for Y == NOT( X ).

logic symbol for NOT

CMOS circuit for Y ==  XOR( A, B )

This circuit corresponds to the NOT-EQUAL 
interpretation:

In the P-transistor circuit, if A != B, then one of the 
paths will connect Y to +V (logic 1).

In the N-transistor circuit, if A == B, then one of the 
paths will connect Y to ground (logic 0).

This logic circuit corresponds to the BIT-FLIP 
interpretation:

        B selects A or NOT(A).



There are two interesting classes of Boolean functions:

    1) Minterm functions output a 1 for some one particular input, and output 0 for all others.
         That is, the output column of a minterm function's truth table has exactly one 1.
         If we OR minterms together, the output column of the resulting function's truth table will be 1
         for any row where any of the minterms has a 1.

    2) Maxterm functions output a 0 for some one particular input, and output 1 for all others.
         That is, the output column of a maxterm function's truth table has exactly one 0.
         If we AND maxterms together, the output column of the resulting function's truth table will be 0
         for any row where any of the maxterms has a 0.

For instance, this is a 2-
input minterm function:

         A   B       m1

        ___________
         0    0       0
         0    1       1
         1    0       0
         1    1       0

This is another 2-input 
minterm function:

         A   B       m2

        ___________
         0    0       0
         0    1       0
         1    0       1
         1    1       0

This the OR of the two minterm 
functions:

         A   B      m1 OR m2

        ________________
         0    0           0
         0    1           1
         1    0           1
         1    1           0

For instance, this is a 2-
input maxterm function:

         A   B       M0

        ___________
         0    0       0
         0    1       1
         1    0       1
         1    1       1

This is another 2-input 
maxterm function:

         A   B       M3

        ___________
         0    0       1
         0    1       1
         1    0       1
         1    1       0

This the AND of the two maxterm 
functions:

         A   B      M0 AND M3

        ________________
         0    0           0
         0    1           1
         1    0           1
         1    1           0

We can express any function as an OR of minterms: for each row that has a 1, pick the minterm that 
has a 1 for that row, then OR the selected minterms.

We can express any function as an AND of maxterms: for each row that has a 0, pick the maxterm 
that has a 0 for that row, then AND the selected maxterms.

Minterms are labeled according to which input produces a 1. The input is treated as a binary number: 
for input ( A, B ) == ( 0, 0 ) the label is 0; for input ( 0, 1 ) the label is 1; for ( 1, 0 ) the label is 2; for ( 
1, 1 ) the label is 3. The corresponding minterms are:  m0 , m1 , m2 , m3 .

Maxterms are labeled according to which input produces a 0:  M0 , M1 , M2 , M3 .



Aside from the fact that any function can be expressed as an OR of minterms (DNF, Disjunctive 
Normal Form) or as an AND of maxterms (CNF, Conjunctive Normal Form), minterms and maxterms 
are interesting because it is easy to build logic circuits for them.

For a minterm, we can build a circuit by expressing what must be true for the minterm to output a 1. 
That is, each input bit must conform to a particular value. For example, if the variable A must have the 
value 0, the expression is NOT(A), while if it must be 1 the expression is (A).

Further, it must also be true that every variable has the correct value; so, we AND the expressions for 
all the variables together. The result is an expression that is only true when all the conditions are met. 
This expression is the minterm.

For example, for m2 it must be that ((A) AND NOT(B)) because m2 outputs 1 exactly when both A is 1 
and B is 0. For any other condition of the variables A and B, m2 outputs a 0.

For maxterms, we set the conditions according to what must be false. For instance, for M2 , the output 
must be 0 when all of the variables have the correct values. That could also be said, M2 must output 1 
if any of the variables has an incorrect value. So, if A must be 1, the logical expression stating that A 
has the wrong value is NOT(A). And if B must be 0, (B) is true when B has the wrong value. We OR 
this together to express that if any of them have the wrong value, M2 outputs a 1:
( NOT(A)  OR  (B) ). And, of course, if none of them have the wrong value, M2 outputs 0, saying in 
effect, It is false that any of the variables has an incorrect value.

A DECODER is a complete collection of minterms, one output wire per minterm. All the minterms 
share the same input, which is the input to the DECODER. Exactly one of the DECODER's outputs 
will be 1 for any particular input.

logic circuit for a 2-bit input DECODER

logic symbol for 2-bit DECODER

We can implement multiple functions 
with a single DECODER by OR'ing its 
minterm outputs.

Here, we implement XOR and NAND. 
Of course, there is a cheaper way to 
implement NAND.



Memory chips are implemented using decoders. One way to keep the delay down is to lay out the bits 
in a 2-d array; that is, in rows and columns. The row decoder selects an entire row of bits. The column 
decoder selects which bit in the row to read or write. The transistors allow the bit cells to be charged to 
+V or discharged to 0. The bit cells are very small, and do not hold their charge for long. A memory 
controller has to recharge the bits at regular time intervals, called "refresh cycles".

A 16-bit DRAM:
4-bit address
16 1-bit words

A 16-word memory w/ 32-bit words 
would use 32 of these DRAMs.

The addressability of a memory organization has to do with memory word size versus how many bits one 
advances through the memory by adding +1 to a memory address. Suppose we have 32-bit addresses 
and 32-bit words. A single DRAM chip could hold 1-G bit. Each bit is individually addressed as shown 
above. Using 32 of these would give us 1-G of 32-bit words. The 32 DRAMs would all share the same 
address input, and if we added +1 to the address, we would get the next 32-bit word in memory.

h00000000

h00000001

h00000010

hFFFFFFFF



We could instead group our 32 DRAM chips into sub-words of 8-bits each (bytes). Each sub-group 
would act as a separate memory with 1-G of 8-bit words.

h00000000

h00000001

h00000010

hFFFFFFFF

Using four of these, we can form a memory with 32-bit words, and 32-bit addresses.

Each Byte-Memory has an independent address input. 
We can designate in which of the four Byte-Memories a 
32-bit word access begins. We need two additional 
address bits for this. For instance, we can fetch the 32-
bit word at address hFFFF5678[00] ( "[00]" indicates the 
new address bits we have added). Each Byte-Memory 
gets the same address, hFFFF5678, and the 32-bit word 
is == { B3, B2, B1, B0 }.

Suppose we instead want to 
fetch a word starting in Byte-
Memory-1. The address would 
be hFFFF5678[01]. All the 
Byte-Memories would get the 
address hFFFF5678, except 
Byte-Memory-0 would get the 
address hFFFF5679.

The 32-bit word fetched would 
be ==  { B0, B3, B2, B1 }.



An implementation of a finite-state machine consists of four parts:

    1) an input
    2) a state element
    3) a functional element
    4) an output

The state element implements the idea of the machine having a finite "current state". The functional part 
implements two functions:  the next-state function and the output function. In a Mealy Machine, both 
depend on the input and the current state. In a Moore Machine, the output only depends on the current 
state.

We can now think of the entire memory as a 
sequence of bytes. An access fetches (or stores) 
four bytes at a time. Accesses that do not have the 
low-order address bits == [00] are "un-aligned".

Adding +1 to the low-order bit advances the access 
one byte in memory: byte-addressable.

h00000000[00]
h00000000[01]
h00000000[10]
h00000000[11]
h00000001[00]
h00000001[01]
h00000001[10]
h00000001[11]

hFFFFFFFF[11]

 M2 

 M1 



To implement a FSM, we first need to encode the states (and input symbols, if needed).

State Encoding for M1

State   Code
  0         00
  1         01
  2         10

State Encoding for M2 

State   Code
  0         00
  1         01
  2         10

We next get their next-state and output functions.

Functions for M1

State     IN       Next-State       Output
  00        0               01                 0
  00        1               00                 0
  01        0               10                 0
  01        1               01                 1
  10        0               10                 1
  10        1               00                 0

Functions for M2

State     IN         Next-State   Output
  00        0               01              00
  00        1               00              00
  01        0               10              01
  01        1               01              01
  10        0               10              11
  10        1               00              11

We use minterm or maxterms to build the functions for each bit of state or output.
Notation:  "-" is NOT,  "*" is AND, "+" is OR.

Logic for M1

             
Next-State[0]  == (  State[1] * -State[0] * -IN )  +
                           ( -State[1] *  State[0]  * IN )

Next-State[1]  == ( -State[1] *  State[0] * -IN ) +
                           (  State[1] * -State[0] * -IN)

Output == ( -State[1] *  State[0] *  IN ) +
                (  State[1] * -State[0] * -IN )

Logic for M2

             
Next-State[0]  == ( -State[1] * -State[0] * -IN )  +
                           ( -State[1] *  State[0]  * IN )

Next-State[1]  == ( -State[1] *  State[0] * -IN ) +
                           (  State[1] * -State[0] * -IN)

Output[0] == ( State[1] + State[0] )
Output[1] == ( State[1] )

State[1]
State[0]
         IN

State[1]
State[0]
         IN

State[1]
State[0]
         IN

State[1]
State[0]
         IN

Next-State[0]

Next-State[1]

State[1]
State[0]

Output[0]

State[1] Output[1]

ROM for M1 Logic

address   Next-State[1]  Next-State[0]  Output
  000                0                   1                0
  001                0                   0                0
  010                1                   0                0
  011                0                   1                1
  100                1                   0                1
  101                0                   0                0
  110                0                   0                0
  111                0                   0                0



Finally, we use the ROM or the logic circuits above and connect them to our state elements (D-FFs).

IN

State[1]

State[0]

     Output[1]

     Output[0]

Next-State[1]

Next-State[0]

address[0]

address[1]

address[2]

Next-State[1]    Next-State[0]    Output

We can simplify our logic circuits by using DeMorgan's Laws and other identities of Boolean Logic.



State elements are implemented as R-
S latches.

     S           R         Q      next-Q
     1            1         0          0  stable
     1            1         1          1  stable
     1            0         0          0  reset
     1            0         1          0  reset
     0            1         0          1  set
     0            1         1          1  set
     0            0         0          ?
     0            0         1          ?

A positive-edge triggered D-flipflop 
stores one bit of data or state.

There is never a continuous signal 
path from D to Q. This prevents 
feedback from changing the state 
element before we want it to change.

The output, Q, changes when the 
clock signal transitions from 0 to 1. 
We say it changes state on the 
positive edge of the clock.

We can also make it so the state 
changes on the negative clock edgd.

Often, we want to control whether or 
not the Flip-Flop will get written into 
on the next clock tick. For that, we 
add a write-enable.

Positive-edge Triggered
 D-Flip-Flop

Negative-edge Triggered 
D-Flip-Flop

Positive-edge Triggered
D-Flip-Flop with write-enable




