
120-final-studyGuide

A 2-input eXclusive-OR (XOR) is defined by this truth
table:

A B Y

0 0 0
0 1 1
1 0 1
1 1 0

where A and B are inputs, and Y is the output. A 3-
input XOR is the functional composition of two 2-
input XORs:

XOR(A, B, C) == XOR(XOR(A, B) , C)

There are two interpretations of XOR:

 1) NOT-EQUAL(A, B)
 == 1 if A is not the same as B;

 2) BIT-FLIP(A, B)
 == NOT(A) if B == 1;
 == A if B == 0.

A CMOS circuit consists of two connected complementary
sub-circuits:

 1) P-type transistors connected to logic 1
 2) N-type transistors connected to logic 0.

 P-type transistors conduct when their input is logic 0.
 N-type transistors conduct when their input is logic 1.

At left is a CMOS circuit for Y == NOT(X).

logic symbol for NOT

CMOS circuit for Y == XOR(A, B)

This circuit corresponds to the NOT-EQUAL
interpretation:

In the P-transistor circuit, if A != B, then one of the
paths will connect Y to +V (logic 1).

In the N-transistor circuit, if A == B, then one of the
paths will connect Y to ground (logic 0).

This logic circuit corresponds to the BIT-FLIP
interpretation:

 B selects A or NOT(A).

There are two interesting classes of Boolean functions:

 1) Minterm functions output a 1 for some one particular input, and output 0 for all others.
 That is, the output column of a minterm function's truth table has exactly one 1.
 If we OR minterms together, the output column of the resulting function's truth table will be 1
 for any row where any of the minterms has a 1.

 2) Maxterm functions output a 0 for some one particular input, and output 1 for all others.
 That is, the output column of a maxterm function's truth table has exactly one 0.
 If we AND maxterms together, the output column of the resulting function's truth table will be 0
 for any row where any of the maxterms has a 0.

For instance, this is a 2-
input minterm function:

 A B m1

 0 0 0
 0 1 1
 1 0 0
 1 1 0

This is another 2-input
minterm function:

 A B m2

 0 0 0
 0 1 0
 1 0 1
 1 1 0

This the OR of the two minterm
functions:

 A B m1 OR m2

 0 0 0
 0 1 1
 1 0 1
 1 1 0

For instance, this is a 2-
input maxterm function:

 A B M0

 0 0 0
 0 1 1
 1 0 1
 1 1 1

This is another 2-input
maxterm function:

 A B M3

 0 0 1
 0 1 1
 1 0 1
 1 1 0

This the AND of the two maxterm
functions:

 A B M0 AND M3

 0 0 0
 0 1 1
 1 0 1
 1 1 0

We can express any function as an OR of minterms: for each row that has a 1, pick the minterm that
has a 1 for that row, then OR the selected minterms.

We can express any function as an AND of maxterms: for each row that has a 0, pick the maxterm
that has a 0 for that row, then AND the selected maxterms.

Minterms are labeled according to which input produces a 1. The input is treated as a binary number:
for input (A, B) == (0, 0) the label is 0; for input (0, 1) the label is 1; for (1, 0) the label is 2; for (
1, 1) the label is 3. The corresponding minterms are: m0 , m1 , m2 , m3 .

Maxterms are labeled according to which input produces a 0: M0 , M1 , M2 , M3 .

Aside from the fact that any function can be expressed as an OR of minterms (DNF, Disjunctive
Normal Form) or as an AND of maxterms (CNF, Conjunctive Normal Form), minterms and maxterms
are interesting because it is easy to build logic circuits for them.

For a minterm, we can build a circuit by expressing what must be true for the minterm to output a 1.
That is, each input bit must conform to a particular value. For example, if the variable A must have the
value 0, the expression is NOT(A), while if it must be 1 the expression is (A).

Further, it must also be true that every variable has the correct value; so, we AND the expressions for
all the variables together. The result is an expression that is only true when all the conditions are met.
This expression is the minterm.

For example, for m2 it must be that ((A) AND NOT(B)) because m2 outputs 1 exactly when both A is 1
and B is 0. For any other condition of the variables A and B, m2 outputs a 0.

For maxterms, we set the conditions according to what must be false. For instance, for M2 , the output
must be 0 when all of the variables have the correct values. That could also be said, M2 must output 1
if any of the variables has an incorrect value. So, if A must be 1, the logical expression stating that A
has the wrong value is NOT(A). And if B must be 0, (B) is true when B has the wrong value. We OR
this together to express that if any of them have the wrong value, M2 outputs a 1:
(NOT(A) OR (B)). And, of course, if none of them have the wrong value, M2 outputs 0, saying in
effect, It is false that any of the variables has an incorrect value.

A DECODER is a complete collection of minterms, one output wire per minterm. All the minterms
share the same input, which is the input to the DECODER. Exactly one of the DECODER's outputs
will be 1 for any particular input.

logic circuit for a 2-bit input DECODER

logic symbol for 2-bit DECODER

We can implement multiple functions
with a single DECODER by OR'ing its
minterm outputs.

Here, we implement XOR and NAND.
Of course, there is a cheaper way to
implement NAND.

Memory chips are implemented using decoders. One way to keep the delay down is to lay out the bits
in a 2-d array; that is, in rows and columns. The row decoder selects an entire row of bits. The column
decoder selects which bit in the row to read or write. The transistors allow the bit cells to be charged to
+V or discharged to 0. The bit cells are very small, and do not hold their charge for long. A memory
controller has to recharge the bits at regular time intervals, called "refresh cycles".

A 16-bit DRAM:
4-bit address
16 1-bit words

A 16-word memory w/ 32-bit words
would use 32 of these DRAMs.

The addressability of a memory organization has to do with memory word size versus how many bits one
advances through the memory by adding +1 to a memory address. Suppose we have 32-bit addresses
and 32-bit words. A single DRAM chip could hold 1-G bit. Each bit is individually addressed as shown
above. Using 32 of these would give us 1-G of 32-bit words. The 32 DRAMs would all share the same
address input, and if we added +1 to the address, we would get the next 32-bit word in memory.

h00000000

h00000001

h00000010

hFFFFFFFF

We could instead group our 32 DRAM chips into sub-words of 8-bits each (bytes). Each sub-group
would act as a separate memory with 1-G of 8-bit words.

h00000000

h00000001

h00000010

hFFFFFFFF

Using four of these, we can form a memory with 32-bit words, and 32-bit addresses.

Each Byte-Memory has an independent address input.
We can designate in which of the four Byte-Memories a
32-bit word access begins. We need two additional
address bits for this. For instance, we can fetch the 32-
bit word at address hFFFF5678[00] ("[00]" indicates the
new address bits we have added). Each Byte-Memory
gets the same address, hFFFF5678, and the 32-bit word
is == { B3, B2, B1, B0 }.

Suppose we instead want to
fetch a word starting in Byte-
Memory-1. The address would
be hFFFF5678[01]. All the
Byte-Memories would get the
address hFFFF5678, except
Byte-Memory-0 would get the
address hFFFF5679.

The 32-bit word fetched would
be == { B0, B3, B2, B1 }.

An implementation of a finite-state machine consists of four parts:

 1) an input
 2) a state element
 3) a functional element
 4) an output

The state element implements the idea of the machine having a finite "current state". The functional part
implements two functions: the next-state function and the output function. In a Mealy Machine, both
depend on the input and the current state. In a Moore Machine, the output only depends on the current
state.

We can now think of the entire memory as a
sequence of bytes. An access fetches (or stores)
four bytes at a time. Accesses that do not have the
low-order address bits == [00] are "un-aligned".

Adding +1 to the low-order bit advances the access
one byte in memory: byte-addressable.

h00000000[00]
h00000000[01]
h00000000[10]
h00000000[11]
h00000001[00]
h00000001[01]
h00000001[10]
h00000001[11]

hFFFFFFFF[11]

 M2

 M1

To implement a FSM, we first need to encode the states (and input symbols, if needed).

State Encoding for M1

State Code
 0 00
 1 01
 2 10

State Encoding for M2

State Code
 0 00
 1 01
 2 10

We next get their next-state and output functions.

Functions for M1

State IN Next-State Output
 00 0 01 0
 00 1 00 0
 01 0 10 0
 01 1 01 1
 10 0 10 1
 10 1 00 0

Functions for M2

State IN Next-State Output
 00 0 01 00
 00 1 00 00
 01 0 10 01
 01 1 01 01
 10 0 10 11
 10 1 00 11

We use minterm or maxterms to build the functions for each bit of state or output.
Notation: "-" is NOT, "*" is AND, "+" is OR.

Logic for M1

Next-State[0] == (State[1] * -State[0] * -IN) +
 (-State[1] * State[0] * IN)

Next-State[1] == (-State[1] * State[0] * -IN) +
 (State[1] * -State[0] * -IN)

Output == (-State[1] * State[0] * IN) +
 (State[1] * -State[0] * -IN)

Logic for M2

Next-State[0] == (-State[1] * -State[0] * -IN) +
 (-State[1] * State[0] * IN)

Next-State[1] == (-State[1] * State[0] * -IN) +
 (State[1] * -State[0] * -IN)

Output[0] == (State[1] + State[0])
Output[1] == (State[1])

State[1]
State[0]
 IN

State[1]
State[0]
 IN

State[1]
State[0]
 IN

State[1]
State[0]
 IN

Next-State[0]

Next-State[1]

State[1]
State[0]

Output[0]

State[1] Output[1]

ROM for M1 Logic

address Next-State[1] Next-State[0] Output
 000 0 1 0
 001 0 0 0
 010 1 0 0
 011 0 1 1
 100 1 0 1
 101 0 0 0
 110 0 0 0
 111 0 0 0

Finally, we use the ROM or the logic circuits above and connect them to our state elements (D-FFs).

IN

State[1]

State[0]

 Output[1]

 Output[0]

Next-State[1]

Next-State[0]

address[0]

address[1]

address[2]

Next-State[1] Next-State[0] Output

We can simplify our logic circuits by using DeMorgan's Laws and other identities of Boolean Logic.

State elements are implemented as R-
S latches.

 S R Q next-Q
 1 1 0 0 stable
 1 1 1 1 stable
 1 0 0 0 reset
 1 0 1 0 reset
 0 1 0 1 set
 0 1 1 1 set
 0 0 0 ?
 0 0 1 ?

A positive-edge triggered D-flipflop
stores one bit of data or state.

There is never a continuous signal
path from D to Q. This prevents
feedback from changing the state
element before we want it to change.

The output, Q, changes when the
clock signal transitions from 0 to 1.
We say it changes state on the
positive edge of the clock.

We can also make it so the state
changes on the negative clock edgd.

Often, we want to control whether or
not the Flip-Flop will get written into
on the next clock tick. For that, we
add a write-enable.

Positive-edge Triggered
 D-Flip-Flop

Negative-edge Triggered
D-Flip-Flop

Positive-edge Triggered
D-Flip-Flop with write-enable

