
Lec-memMapIOtrapJSR
0000: Trap x00 vector
 ...
00FF: Trap xFF vector
0100: Exception x00 vector
 ...
017F: Exception x7F vector
0180: Interrupt x80 vector
 ...
01FF: Interrupt xFF vector
0200: OS code/text
 ...
 OS data
 ...
 OS heap
 ...
2FFF: OS stack bottom
3000: USER code/text
 ...
 USER data
 ...
 USER heap
 ...
 ...
FDFF: USER stack bottom
FE00: Device 0 register
 ...
FFFF: Device 1FF register

Memory device's address
decoder does not recognize
these as memory addresses.

This portion of physical
memory is not accessible.

Memory Mapped I/O:
I/O Devices have read/write access via device registers.
To send a word of data to a device, write to its memory-mapped address:
 ST R1, <address?>
To receive a word of data, read (LD).

SYS_BUS

disp_ctl, The Display Device I/O Interface

Address Decode

translation

KBDRKBSR

What is Non-Memory Mapped I/O?

--- Separate opcodes and address space (Intel x86 IA-32 and IA-64 ISAs):

 in r4, x0D

--- Control-Bus signal "IO": 0, access memory; 1, access I/O device (uses same address wires)

To reference I/O device, we need

16-bit address.

==> Use pointer variable

================ ASM source code:
 .orig x3000

LDI R0, KBDRptr
 KBDRptr:

.FILL xFE02

================ Machine code in memory:
3000: 1010 000 000000000
3001: 1111 1110 0000 0010

================ Execution:
R0 <== MEM[MEM[3001 + 0]]
 == MEM[xFE02]
 == KBDR

Address
Decode /
Control
FSM

Address
Decode

1. Keypress event, '4':
 KBDR <== x0034

2. Code executes LD:

MAR <== xFE02
ADDR_bus <== MAR

Control bus sends MIO_R

Address decode
recognizes xFE02

MDR <== KBDR

3. R0 <== MDR

Reading KBDR device register

MEM-IO BUS

POLL:
 LDI R1, KBSRptr

 BRn Ready
 BRnzp POLL

Ready:
 LDI R0, KBDRptr

BRnzp DONE

KBSRptr: .FILL xFE00
KBDRptr: .FILL xFE02

DONE:
;--- (do other stuff)

How do we know data register has valid data? Ask!
Ask whom? Device's status register.

(Later: have the status register alert us instead.)

TRAP <n> Assembly-pseudonymn Description

-------------- ---------- ---
TRAP x25 HALT jump to OS w/ message, loops in OS forever.

TRAP x20 GETC one char in, keyboard data ==> R0[7:0] (clears R0 first).

TRAP x21 OUT one char out, R0[7:0] ==> display; ignores big-end byte, R0[15:8].

TRAP x22 PUTS string out, Mem[R0++] ==> display until x0000. Ignore big-end byte, 1 char per word.

TRAP x23 IN displays prompt, then one char in ala GETC.

TRAP x24 PUTSP same as PUTS, but packed (2 chars per word, little-end byte then big-end byte).

See PP, Append. A.4, Table A.2

Who wrote this code? Which OS code is loaded into PennSim? Does lc3as translate "HALT", "halt", ...?
Who wrote lc3as? Does every assembler for LC3 do the same thing?

Depends on OS version.

Get KB's status (R1 <== KBSR)
 LDI R1, PTR
 PTR: .FILL xFE00

1.a MAR <== PC + offset
1.b Memory address decode == 1
2. MDR <== address of KBSR
3. MAR <== MDR
4. addrBus <== MAR (FE00)
5. kb_ctl address decode == 1
6. kb_ctl <== MIO_R
7. dataBus <== KBSR
8. MDR <== dataBus
9. R1 <== MDR

Suppose:
PC == 1000
 Memory

 ...
 1000: LDI R1, (+1)
 1001: BRnzp (+1)
 1002: FE00
 ...

instruction fetch:
IR <== 1010001000000001
PC <== 1001

1. calculate address:
 MAR <== PC + IR[8:0] (1001 + 1)

2. fetch PTR's data from memory:
 MDR <== Mem[1002] == FE00

3, 4. send address to addrBus:
 MAR <== MDR (FE00)
 addrBus <== MAR

5. kb_ctl recognizes address:
 addrBus[15:0] == 7'hFE00

6. uSeq Controller sends Read
 MIO_R == 1

7. kb_ctl sends KBSR to dataBus
 dataBus <== KBSR

8. MDR gets KBSR data:
 MDR <== dataBus

9. KBSR data to destination register:
R1 <== sys_bus <== MDR

R7 <== PC
PC <== Mem[IR[7:0]]

 ret

 trap x23

TRAP routines provide services.
User (and OS) code jumps to Trap's code to use service.

Whose job is it to save/restore registers and state?
Depends:
-- Register? ==> caller or callee? by convention.
-- PC, CC/PSR? ==> hardware
-- stack SP? ==> hardware/OS/user code.

;=======================

;= Trap x23 Routine (aka "IN")

;=======================

.ORIG x04a0 ;== code's runtime location.

st r1, saved_r1 ;== save user's registers.

st r2, saved_r2

 ... ;== get input

 ...

ld r1, saved_r1 ;== restore user's registers.

ld r2, saved_r2

ret ;== return to user's code

saved_r1: .FILL x0000 ;== reg value storage

saved_r2: .FILL x0000 ;== reg value storage

.END

Display prompt

 r1 <== char

 DSDR <== r1

Read 1 char from kb

 r2 <== KBSR

 poll

 r0 <== KBDR

.orig x3000
 ... ;= do stuff
jsr foo ;= jump to foo()
 ... ;= use foo()'s result
jsr foo ;= jump to foo() again
 ...

foo: ;= code for foo()
 ...
ret ;= jmp r7

Reuse code.

Who (caller/callee) is responsible for saving/restoring registers?

If code is generated by compiler? ==> by compiler convention.

(What about CC?)

JSR
R7 <== PC
PC <== PC + IR[10:0]

See complete state:

docs/LC3-uArch-ControlStates.html
docs/LC3-uArch-PPappendixC.pdf

Generally, saving state involves more than RegFile:

PSR[15] = Privilege level (1=user, 0=super)
PSR[10:8] = Interrupt Priority level (0=low, 7=high)
PSR[2:0] = Condition Codes (N, Z, P flags)

Also, there are usually other important bits in PSR (but not for LC3).
Also, there are other status and control registers (but not for LC3).

OK, So far, so good, BUT

What about passing arguments and return values?

What about nested calls, recursion?

JSSR
R7 <== PC
PC <== RegFile[IR[8:6]]

;====================
;= Trap x23 (aka "IN")
;====================
.orig x04a0

st r7, saved_r7
jsr save_regs
 ...
save_regs:
st r1, saved_r1
st r2, saved_r2
 ...
st r6, saved_r6
ret

saved_r1: .FILL x0000
saved_r2: .FILL x0000
 ...
saved_r6: .FILL x0000
saved_r7: .FILL x0000

In PP's Fig. 9.8,

Why isn't "st r7, saved_r7" inside the routine "save_regs"?

Does this mechanism work for nested calls?

Could we use the stack instead?

Why not "jsr save_regs" before "st r7, saved_r7"?

Where can I find the source code for the trap x23 routine?

(1) run PennSim.jar or lc3sim or Simulate.exe,
 ---- look at VT, at address x0023
 ---- see what address is stored there
 ---- look at code at that address

(2) see OS source code in src/lc3os.asm

