
See P&P Appendices A and C: LC-3 ISA, TRAPS,
Devices, Interrupts, Exceptions.

1. DATA IN REGISTER (RegFile[i] , IR , PC)

 R2 <== R3 + R1 (register, register, register)

R2 <== R3 + IR[4:0] (register, register, immediate)

R2 <== PC + IR[8:0] (register, PC, immediate)
 (assembler computes PCoffset9 from label)

2. MEMORY ADDRESS IN REGISTER (Regfile[i] , PC , IR)

MAR <== R3 + IR[5:0] (register, base-offset)
R2 <== MDR

MAR <== PC + IR[8:0] (register, PC-relative)
R2 <== MDR (assembler calculates offset from label)

PC <== PC + IR[8:0] (PC-relative) (if Condition Code Z=1)

PC <== R2 (register)
 (if R7, then aka "RET")

R7 <== PC (PC-relative)
PC <== PC + IR[10:0] (assembler calculates offset from label)

R7 <== PC (register)
PC <== R2

Typical usage (C compiler generated)

.Orig x3000
INIT_CODE
LD R6R6R6R6, STACK_POINTERSTACK_POINTERSTACK_POINTERSTACK_POINTER
LD R5R5R5R5, STACK_POINTERSTACK_POINTERSTACK_POINTERSTACK_POINTER
LD R4R4R4R4, GLOBAL_DATA_POINTERGLOBAL_DATA_POINTERGLOBAL_DATA_POINTERGLOBAL_DATA_POINTER
LD R7R7R7R7, GLOBAL_MAIN_POINTERGLOBAL_MAIN_POINTERGLOBAL_MAIN_POINTERGLOBAL_MAIN_POINTER
jsrr R7R7R7R7
HALT

STACK_POINTERSTACK_POINTERSTACK_POINTERSTACK_POINTER .FILL x.FILL x.FILL x.FILL xF000F000F000F000
GLOBAL_DATA_POINTERGLOBAL_DATA_POINTERGLOBAL_DATA_POINTERGLOBAL_DATA_POINTER .FILL .FILL .FILL .FILL GLOBAL_DATA_STARTGLOBAL_DATA_STARTGLOBAL_DATA_STARTGLOBAL_DATA_START
GLOBAL_MAIN_POINTERGLOBAL_MAIN_POINTERGLOBAL_MAIN_POINTERGLOBAL_MAIN_POINTER .FILL .FILL .FILL .FILL mainmainmainmain

mainmainmainmain::::

func:func:func:func:

GLOBAL_DATA_POINTER:GLOBAL_DATA_POINTER:GLOBAL_DATA_POINTER:GLOBAL_DATA_POINTER:
 .FILL x1234 .FILL x1234 .FILL x1234 .FILL x1234
 .FILL x3000 .FILL x3000 .FILL x3000 .FILL x3000
 .FILL x0002 .FILL x0002 .FILL x0002 .FILL x0002
 .FILL func .FILL func .FILL func .FILL func

;------ get data:

ADD R0, R4, #2
LDR R2, R0, #0

;----- jump to func's location:

ADD R0, R4, #3
JSRR R0

3. MEMORY ADDRESS IN MEMORY

MAR <== PC + IR[8:0] (get address where address is)
MAR <== MDR (get address, use it)
R2 <== MDR (get data at address)

Idea: 16-bit address using only 9 bits in IR.
 ldi r2, myPTR
 ...
 myPTR: .FILL xFE02

Alternative: Move myPTR into a register, use base-offset mode:
 ld r1, myPTR
 ldr r2, r1, 0
 ...
 myPTR: .FILL xFE02

R7 <== PC
MAR <== IR[7:0] (get address where address is)
PC <== MDR (get address == jump)

Idea: make full 16-bit jump using only 8 bits in IR.
Also, how to jump to OS trap routine w/o knowing where
trap routine's code is. Allows OS to relocate itself: just
change vector table entry.
 trap x2 ;--- jump to OS service routine x02.
 ...

Alternative: Move VT entry into a register, use jssr:
 ldi r1, VT2
 jssr r1
 ...
 VT2: .FILL x0002

Yet another address-in-memory mechanism.
Just like TRAP, but not an instruction.

Something goes wrong: jump to OS routine (exception)
I/O device sends a signal: jump to OS routine (interrupt)

Aside: Using what we had above to eliminate ldi, we
could eliminate both LDI and TRAP instructions from
the LC3's ISA: we would have two unused opcodes to
play with.

MAR <== VECT_REG
PC <== MDR

EXCEPTIONS
---- detected during instruction execution.
 Eg., "illegal opcode"
 detected in state-32 (decode):
 VECT_REG <== x0100.

INTERRUPTS
---- generated by device interrupt logic
---- detected in state-18 (fetch)
 Eg., a keyboard event:
 VECT_REG <== x0180

LC3 Controller States,
13: opcode exception
44: privilege exception
49: interrupt

Not the same as TRAP.
For TRAP, currently executing code,
---- knows a jump is occurring;
---- can SAVE its own STATE beforehand;
---- knows its CC state could change: does not BR immediately after TRAP.

I. Access top item in stack.

LDR R2, R6, #0

MAR <== R6
R2 <== MDR

Stack Pointer (SP) is R6

II. Put new item on top of stack: PUSH

III. Remove item from top of stack: POP

ADD R6, R6, #-1
STR R1, R6, #0

R6 <== R6 - 1
MAR <== R6 + IR[5:0]
MDR <== R1

LDR R3, R6, #0
ADD R6, R6, #1

MAR <== R6 + IR[5:0]
R3 <== MDR
R6 <== R6 - 1

When an exception/interrupt occurs

---- PSR altered immediately, before the next instruction is fetched.

---- PC altered, i.e., a jump.

 PC could go to R7, but what about nested execeptions/interrupts?

---- SP (R6) altered to push state, it needs to be saved.

---- Regs can be saved by service routine code.

===> Hardware, not instruction execution, must save state!

37, 41 push PSR
 SP <= SP-1
 MAR <= SP-1
 Mem <= MDR
43, 47, 48 push PC
 MDR <= PC-1
 SP <= SP-1
 MAR <= SP-1
 Mem <= MDR
50, 52, 54 jump
 MAR <= Vector
 MDR <= Mem
 PC <= MDR

49 INT
 MDR <= PSR
 PSR[10:8] <= IntPriority
 PSR[15] <= 0
 <PSR[15] == 1?> save SP

When exception/interrupt routine COMPLETES

--- RESTORE Regs, done in service routine

--- RESTORE PC, PSR: the RTI instruction,

 PC <== POP
 PSR <== POP

---- RESTORE SP, see R6 save/restore hardware

8 RTI
 MAR <= SP

36, 38, 39 pop PC
 MDR <= Mem
 PC <= MDR
 SP <= SP+1
 MAR <= SP+1

40, 42, 34 pop PSR
 MDR <= Mem
 PSR <= MDR
 SP <= SP+1
 <PSR[15] == 1?> (restore SP)

LEA R1, #-3

ADD R2, R1, xE

ST R2, #-5

AND R2, R2, 0

ADD R2, R2, #5

STR R2, R1, xE

LDI R3, x-9

(PP, example, Section 5.3.5)

;-- R1 <== &pointer R1 gets (address of pointer variable)

;-- R2 <== &data R2 gets (address of pointer variable + 14) == (address of data variable)

;-- pointer <== &data pointer variable gets (R2, address of data variable)

;-- R2 <== 0 data calculation into R2

;-- R2 <== 5 data calculation into R2

;-- data <== 5 MEM[(R1, address of pointer variable) + 14] gets data, R2

;-- R3 <== data R3 gets data from MEM via de-referencing pointer variable.

