
Reading:
Patt & Patel

Chp 6.1.2-6.1.3 (control constructs and mechanisms)

Chp 6.2.1 up through Example 1. (Debugging, using the
simulator/debugger.

Chp. 7.1-7.4 (LC-3 Assembly language: instruction
syntax, labels, comments, assembler directives, 2-pass
assembly, object files and linking, executable images).

Lec-7-HW-1-LC3-ASM-SOLN

Problems:

P&P, Chp. 6
6.10 (conditional, odd?)
6.12a (char echo)
6.15 (figure out instruction)

P&P, Chp. 7
7.1 (hand assemble) NB--Assume we mean "the location in the object file that will get loaded to memory location x3025" for
the text's "location x3025 of the object file."
7.2 (hand assembly, symbol table entry)
7.4 (hand assembly, symbol table)
7.8 (hand assembly, program trace)
7.14 (debugging asm)
7.24 (looping control)
7.25 (too large constant in .FILL)

NB--Using a simulator/debugger in conjunction with an assembler can be helpful for these problems. Assembler is lc3as;
simulator/debugger is PennSim.jar.

Also, see in docs/:

LC3-assemblySyntax.html
LC3-IntructionsSummary.html
README-LC3tools.html
LC3-assemblyCheatSheet.asm
LC3-AssemblyManualAndExamples.pdf

(6.12) Echo one keyboard (kb) char to display.

;--
;---- KBecho
;---- Get char from kb, send to display. We take the lazy route and use pre-coded OS functions.
;---- That's what they are there for, after all. "GETC" and "OUT" are assembler aliases
;---- for TRAP x20 and TRAP x21, respectively.
;--

TRAP x20 ;---- "GETC": Read char from kb into R0[7:0]
TRAP x21 ;---- "OUT": Send char in R0[7:0] to display.

GETC does polling until the kb controller signals it has new data from the keyboard. GETC then reads the
content of kb's data register into R0. OUT polls until the display signals it can accept new data, then writes the
content of R0 to the display's data register. Note that kb zeroes the high eight bits of its data register and puts
an ASCII code in the low eight bits; the display reads only the low eight bits of its data register.

To poll a status register's ready bit (bit_15), read the device's status register into a register, then check whether
the register's high bit is 1. We access kb's status register via memory address xFE00; its data register via
memory address xFE02. For code clarity, we keep those addresses in memory words in our program:

KBSR: .FILL xFE00
KBDR: .FILL xFE02

and reference them as pointer variables via their labels, eg., LDI R0, KBSR

For code details of OUT and GETC, see lc3os code:

(1) using an LC3 debugger/simulator, find the addresses of the two trap routines in the trap vector table, then
look in those memory locations to find the code. The trap vector for GETC is in memory location x0020; so,
look at memory location x0020, write down the address found there, and then look at memory content at that
address. Vector for OUT is at x0021. Realize that the code is in memory because the debugger/simulator
loaded it to memory. That is something that would happen as part of system start-up, called "boot strapping" or
booting for short;

(2) or see OS source code in src/lc3os.asm or versions thereof.

6.10) Content of R2 even or odd? Give machine language. Use
conditional construct.

;--
;---- R2 even or odd
;---- If odd, bit_0 is 1; else even.
;--

AND R0, R2, 1 ;--- result depends only on bit_0
BRz IsEven

IsOdd:
... ;---- do odd stuff
jmp Done

IsEven:
... ;---- do even stuff

Done:

(6.15) Given reg and mem content, what instruction @ x3010 was executed?

There were no changes in reg content, only mem x3406 changed from x31BA to xE373. R2 contained xE373.
Therefore, the instruction must have been a memory write of R2 via ST or STI or STR.

We try ST: ST R2, <offset>
We know the address must come out to be x3406 and the PC contained x3010+1; so

x3011 + <offset> = x3406
We get <offset> = x3F5, positive 2's complement, or 011 1111 0101 in as few bits as possible. That's 11 bits,
but the offset field for ST is only 9 bits. ST won't work. We could try STI, but there isn't any memory location
containing the address x3406; so, there's no point.

It must be STR: STR R2, R?, <offset>

STR's address arithmetic says:
R? + <offset> = x3406

where the offset is 6-bit 2's complement. The register value closest to x3406 is in R4, x33FF. The difference is
+7. So, the offset is x07, or 00 0111 in 6 bits.

STR R2, R4, #7

(7.1)
What's in x3025
after assembly?

;-- in effect, code is,
.orig x3024
place: .FILL x45A7

LDI R3, place

assembly makes memory as:
x3024: x45A7
x3025: (bits for "LDI R3, -2")

result is:
x3024: 0100010110100111
x3025: 1010 011 111111110
or
x3024: x45A7
x3025: A7FE

(7.2)
ASCII LD R1, ASCII
What's in R1 after
execution?

(7.4) ST for
code?

(7.8) Show REG_FILE content at breakpoint.
(xA400) this1: lea r0 this1
(xA401) this2: ld r1, this2
(xA402) this3: ldi r2, this5
(xA403) this4: ldr r3, r0, #2
(xA404) this5: .fill xA400

bp = xA404

(7.14) Assemble code

(7.24) Fix bug in Lshift-by-4 program.

Assembler complains it cannot represent this value: it is 20-
bits, and cannot fit into 16-bit word.

