Prob (yes) = 4
Prob (no) = 34
yes:
$$\log (2^{-2}) = 2$$
 bits
no: $\log (34) \approx -\log (7) \approx -\log (34) = 2$ bit

$$\frac{\text{Avg info of answer?}}{(2 + 34)(2)} = 2 \text{ bit}$$

$$\frac{\text{Avg info of answer?}}{(2 + 34)(2)} = 2 \text{ bit}$$

$$\frac{\text{Avg info of answer?}}{(2 + 34)(2)} = 2 \text{ bit}$$

$$\frac{\text{Frob(No)} \cdot (2 \text{ bit}) + \text{prob(No)} \cdot (2 \text{ bit})}{(2 \text{ bit})} = \frac{1}{2} + \frac{3}{8} = \frac{7}{8} \text{ bit}$$

$$\frac{\text{Extreme: Prob(yes)} = \frac{1}{2} \text{ or } Prob(no) = (2^{10} - 1)/2^{10} \approx 1$$

$$avg = \frac{1}{2^{10}} (10 \text{ bits}) + (1) \log(1) \qquad \Rightarrow 1/00 \text{ bit}$$

$$\frac{\text{Thm max avg. if } P_i = \frac{1}{n} \qquad \text{for } n \text{ possibilities}$$

$$\frac{1}{(2 + i)} = \frac{1}{2} \text{ for } n \text{ possibilities}$$

(a,b,c,d) w/ prob. (.1,.4,.2,.3)

We are sending more bits than information content, but we are very close.

MIN-Length code ==> MAX compression ==> most info bits in least number of communicated bits.

Suppose n different "messages" to send, $n = 2^k$. Maximum entropy => equally likely: Prob(message-i) = (1/n) for any message-i.

Expected information per message is,

 $Sum[-(1/n) \log[1/n]] = -n(1/n \log[1/n]) = -1 \log[2^k] = -1(-k) = k$ bits per message. If we use a k-bit code for our messages, we will be 100% compressed. (k-bit integers? Are they equally likely?)

"message" could be a bit, a string of bits, a character, a page of characters, ...

Code words: 00 and 11 --- "0" and "1" Code words: 10 and 01 --- 1-bit errors: odd parity codeword indicates error. Works for k-bit messages w/ 1 parity bit, but only if 2-bit errors very unlikely (never occur?).

1-bit Error Correction w/ 3-bit code words: "0" ==> 000 "1" ==> 111 001 ==> "0" 011 ==> "1" 010 ==> "0" 101 ==> "1" 100 ==> "0" 110 ==> "1"

- 1-bit Correction, 2-bit Detection
- -- odd parity: 1-bit error corrected
- -- exactly two 1's: 2-bit error detected
- -- otherwise: no error

How many extra bits are needed at minimum? Depends on noise in channel: Shannon Noisey Coding Theorem.

Can you think of a scheme like the paritybit scheme that uses as few bits as possible? (See Reed-Solomon codes, for instance.)

More bits, higher error probability.

Positional notation for numbers

d_i is a "digit", a symbol for a value: value("d_i")b is a value, the "base" of the number notation.There is a rule to find the value, given the symbols.

$$value(\mathbf{d}_{n}\mathbf{d}_{n-1}\cdots\mathbf{d}_{n}\mathbf{d}_{n}^{"}) = \mathbf{d}_{n}\cdot\mathbf{b}^{n} + \mathbf{d}_{n-1}\cdot\mathbf{b}^{n-1} + \cdots + \mathbf{d}_{n}\cdot\mathbf{b}^{1} + \mathbf{d}_{n}\cdot\mathbf{b}^{n}$$

unsigned 3-bit binary binary: --- digits = { "0", "1" } --- base = 2

$$\begin{array}{rcl} 000 & \longrightarrow & value \triangleq 0.2^2 + 0.2^1 + 0.2^\circ &= 0\\ 001 & \longrightarrow & value \triangleq 0.2^2 + 0.2^1 + 1.2^\circ &= 1\\ \cdots & & \cdots\\ 111 & \longrightarrow & value \triangleq 1.2^2 + 1.2^1 + 1.2^\circ &= 7\\ \end{array}$$

$$A_{2}A_{1}A_{0} + B_{2}B_{1}B_{0} = C_{3}S_{2}S_{1}S_{0}$$

$$A_{2}B_{1}C_{0} + B_{2}B_{1}B_{0} = C_{3}S_{2}S_{1}S_{0}$$

$$A_{2}B_{1}C_{0} + B_{2}B_{1}B_{0} = C_{3}S_{2}S_{1}S_{0}$$

$$A_{3}B_{1}C_{0} + B_{2}B_{1}C_{0} + B_{2}B_{1}C_{0}$$

$$A_{3}B_{1}C_{0} + B_{2}B_{1}C_{0}$$

$$A_{4}B_{1}C_{0} + B_{1}C_{0}$$

$$A_{$$

Let's try SUBTRACTION

 $A_2A_1A_0 - B_2B_1B_0 = b_3S_2S_1S_0$ $\sim possible borrow$

It's almost this simple in the LC3.

This is a **3-bit version** of LC3 (sort of).

Some sort of function f converts 4-bit opcode to 2-bit ALU.ctl. In uCoded control, this function is implemented as control bits in ROM.

Unsigned Arith. Errors	3-bit numbers			
A + B > 7 => 0 A - B < 0 =>	c = 1 b = <u>1</u>	S = (A- S = (A-	+ B) ma · B) ma	$d 2^3 \leq 7$ $d 2^3 \geq 0$
$\left(\frac{C_3}{2} + \frac{5}{2} \right)^2$	+ S , · 2' + S , · 2°) mod 2 ³	= (5, 5, 5,
$\left(\frac{b_{3}(-1)}{2} + \frac{5}{2}\right)^{2}$	* + \$.2' + \$.2") mod 23	=	5, 5, 5,
b = c = 1 =	⇒ 0 ve	erfLow	Error	-

We have 8 possible 3-bit patterns (symbols).

Choose an interpretation.

3-bit Code	interpretation as value
	0 1 2 3 4 5 6 7
	NBWe represent the value using another encoding: base 10!

What other number values are we interested in?

Are other encodings useful?

Scal	led Numbers	
3-bit Code	interpretation as	value
000	0	
010	8 16	
011	24 32	
$\begin{array}{c} 1 \\ 0 \end{array}$	40 48	
11 1	56	

magnitude		
interpretation	as	valu
+0 +1		
+2 +3		
- 1 - 2		
	magnitude <i>interpretation</i> +0 +1 +2 +3 -0 -1 -2 -3	magnitude interpretation as +0 +1 +2 +3 -0 -1 -2 -3

2's-Complement Encoding: represent **POSTIVE** and **NEGATIVE**

CODE Value +3 0 1 1 +1 +2 0 1 0 +1 + 1 001 +1 000 0 5111 - 1 >110 - 2 $-1 \leq 1 0 1$ $-1 \leq 1 0 0$ - 3 - 4

Which value makes sense?

0 () 0 1 1 (-1) hmm, kind of makes sense,

$$-3 \implies \bigcirc 3 \text{ steps}$$

$$\implies \bigcirc 2^3 - 3 = 5 \text{ steps}$$

Sanity check
$$-(-x)$$
?
 $-x \Rightarrow (2^n - x)$
 $-(-x) \Rightarrow 2^n - (2^n - x)$
 $= x$
 $-(-x) = X$
in 2's comp.

L

٨

$$(-3)_{2's \ comp} \longrightarrow 2^{n} - 3 = 8 - 3 = 5$$

- $(-3)_{2's \ comp} \longrightarrow 2^{n} - 5 = 8 - 5 = +3$

sanity check: 0 - 1?

Produce - x in 2's Complement (regardless of whether x is + or -):

Negate bits (aka 1's Complement), then add 1.

Simple logic: inverter on each bit, carry in to lowest FA set to 1.

==> We can use adder for signed subtraction

Let's try
2's comp of neg. number (expressed in 2's comp).
2's comp (
$$1x_3x_2x_1x_0$$
)
 $2's Comp (1x_3x_2x_1x_0)$
 $0\overline{x}_3\overline{x}_2\overline{x}_1\overline{x}_0 + 1$
 $1ip bits, add 1$
 $flip = 0000$
 $flip bits, add 1$
 f

$$\begin{array}{c|c} \mathbf{O} & \mathbf{D}, & \mathbf{D}, \\ \mathbf{J} & \mathbf{J} & \mathbf{J} \\ \mathbf{O} & \mathbf{X}, & \mathbf{X}_{\mathbf{O}} \end{array}$$

$$0 \chi_1 \chi_0 = S =$$

in =

bv

· in =()

Multiplier

 $\boldsymbol{\mathcal{L}}_1$

What about signed numbers?

Convert to unsigned.

Multiply.

Convert back.

Can we simplify multiplier?

- -- Get rid of zero register and mux.
- -- Use y_i to write-enable S register.

Can we speed up multiply? We currently iterate n times to multiply n-bit numbers. Add more hardware? How?

INTEGER (unsigned) DIVISON x = **kq** +r **k** = divisor, **q** = quotient, r = remainder (ignore for now). FIND q.

K-scaled integers: n-bit integer **x** represents k^*x , range = k^*2^n .

How many bits do we need for 4 decimal digits of precision?

Sorting is most common operation for numerical data

Checking x > y seems hard for floats.

Checking n > m for ints: do (n - m) and check sign bit, if 0 then True.

Can we check x > y using integer hardware?

That is, can we treat x and y as if they were integers, and do integer subtraction?

How about the exponent part?
$$x - y = 2$$
 2's comp
 $x = 2$'s comp exp
 $x = +2^3 \cdot (1.00 \dots 0)$
 $y = +2^{-1} \cdot (1.0 \dots 0)$
 $x = -2xp$
 $y = -2xp$
 y

-> Let's see if we can patch this up. Recall, our only problem is if both x and y have the same sign.

E.G., 3-bit exponents in 2s-complement

Negative exponents look smaller than positive exponents AS unsigned ints.

E = **e** + 011

excess-3	E in e		e in 2s-comp	value
0	• 110	+011 ==>	011	+3
1	• 101	+011 ==>	010	+2
0	• 100	+011 ==>	001	+1
1	011	+011 ==>	000	0
0	• 010	+011 ==>	111	-1
1	001	+011 ==>	110	-2
0 *	• 000	+011 ==>	101	-3
1 *	111	+011 ==>	100	-4

Rotate 2'comp 50 that +3 becomes largest number available.

$$\begin{array}{c} \begin{array}{c} e \\ 111 \\ e \end{array} \longrightarrow \pm \infty \\ \end{array}$$

$$\begin{array}{c} e \\ 111 \\ f \neq 0 \end{array} \longrightarrow \text{NaN} \end{array}$$

$$\begin{array}{c} \stackrel{e}{\underline{00000}} \longrightarrow 0 \quad (\pm 0) \\ \stackrel{e}{\underline{000f} \neq 0} \longrightarrow \text{not normalized} \\ 2^{-3}0f \end{array}$$

Convert to 32-bit FP 28

1. Convert to binary

$$\frac{28}{-16} - \frac{1 \cdot 2^{4}}{12} = 10000$$

$$\frac{-8}{4} + \frac{1 \cdot 2^{3}}{12} = 1000$$

$$\frac{-8}{4} + \frac{1 \cdot 2^{3}}{12} = \frac{100}{11100}$$

$$\frac{2. Normalize}{2^{4} \times 1.1100} = 2^{4} \times 1.1100$$

4. Convert e to excess
$$(2^{n-1}-1)$$

excess $(2^{n-1}-1) = 127)$

$$\begin{array}{rcl} 00000|00 &= e \\ + & 01111111 &= 127 \\ \hline & 0000011 &= E \end{array}$$

Convert back

1. decode:
$$+ 2^{10000011} \times |.1|00...0$$

2. convert E $-\frac{11111}{1000011}$
 $-\frac{-0111111}{0000100} = 4 = e$
 $\Rightarrow 2^{4} \times |.1| \qquad (convert f) \Rightarrow 1.1100 = 11100$
 $\max 2^{4} \times |.1| \qquad (convert f) \Rightarrow 1.1100 = 11100$
 $\max 2^{4} \times |.1| \qquad (convert f) \Rightarrow 1.1100 = 11100$
 $\times 2^{4} \times |.1| \qquad (convert f) \Rightarrow 1.1100 = 11100$

• 0 101 11111 101			
	What happens when you round?		
	Number becomes denormalized arrrrgggghhh		
	FP adder actually has more than three steps		
	Align exponents		
	Add/subtract significands		
	Re-normalize		
	Round		
	Potentially re-normalize again		
	Potentially round again		

Int 32	Int 64	Fp 32	Fp 64
1	1	4	4
- 3	5	4	4
14 to 40	23 to 87	16	20
	1 3 14 to 40	1 1 3 5 14 to 40 23 to 87	1 1 4 3 5 4 14 to 40 23 to 87 16

So much for encoding data. We could go on to audio, video, ... But, back to noise and errors.

Error Detection/Correction

"message" could be a bit, a string of bits, a character, a page of characters, ...

Code words 00 and 11 are good data, 10 and 01 indicate 1-bit errors. Last bit is "parity" bit, odd parity codeword indicates error. Works for k-bit messages w/ 1 parity bit (if 2-bit errors very unlikely).

Hamming 7,4 code: Find distances to all other code words. GREEN-PARITY: Bits[3, 2, 0] BLUE-PARITY: Bits[3, 1, 0] RED-PARITY: Bits[2, 1, 0]

00

ASCII (See back cover of PP)

HEX CODE 00 01	MEANING I NUL SOH	Printable? no no	- (
 20	space	yes)	6
 30 31	"0" "1"	yes yes	
 41 42	 "A" "B"	yes yes	
 61 62	 "a" "b"	yes yes	
 7A	 "z"	yes	
 (other stuff	 non-standard)	

What to Print	Starting Memory Address	What is displayed (left-to-right)
4-byte number (in hex notati	on) 0	6D412F32
two 2-byte numbers (in hex)	0	2F32 6D41
four 1-byte numbers (in hex)	0	32 2F 41 6D
one 4-byte string	0	2 / A m

(see "od" in unix)

YUN Length 10 * 10 *