
How many questions must be asked to be certain 
where the ball is. (cases: avg, worst, best)

CODING and INFORMATION
We need encodings for data.

P( Hit 1st ) = 1/16

P( Hit 2nd ) = P( Hit 2nd | Miss 1st )P( Miss 1st )  = (1/15)(15/16)         = 1/16

P( Hit 3rd ) =  (1/14) * P( Miss 2nd and 1st )  =  (1/14)(14/15)(15/16)     = 1/16

E( n ) = 1*(1/16) + 2*(1/16) + ... + 15*(1/16) + 15(1/16)    =    (1+2+3+...+15+15) / 16  = 8 1/2 - 1/16





We are sending more bits than information content, but we are very close.

MIN-Length code ==> MAX compression ==> most info bits in least number of communicated bits.

Suppose n different "messages" to send, n = 2^k. 

Maximum entropy  =>  equally likely:   Prob( message-i )  = (1/n)    for any message-i.

Expected information per message is,

 Sum[ - (1/n) log[ 1/n ] ]    =   - n ( 1/n log[ 1/n ] )    =    -1 log[ 2^-k ]    =    -1 (-k)    =    k  bits per message.  If we 

use a k-bit code for our messages, we will be 100% compressed. (k-bit integers? Are they equally likely?)

Avg. #bits sent,
using our code.

Expected (Avg.) bits of 
information, per message



"message" could be a bit, a string of bits, a 
character, a page of characters, ...

Code words: 00 and 11    ---   "0"  and  "1"
Code words: 10 and 01    ---    1-bit errors: odd parity codeword indicates error. 
Works for k-bit messages w/ 1 parity bit, but only if 2-bit errors very unlikely (never occur?).

1-bit Error Correction w/ 3-bit code words:
"0"  ==>  000
"1"  ==>  111

001  ==>  "0"              011  ==>  "1"
010  ==>  "0"              101  ==>  "1"
100  ==>  "0"              110  ==>  "1"

1-bit Correction, 2-bit Detection

-- odd parity: 1-bit error corrected

-- exactly two 1's: 2-bit error detected

-- otherwise: no error

How many extra bits are needed at 
minimum? Depends on noise in channel:
Shannon Noisey Coding Theorem.

Can you think of a scheme like the parity-
bit scheme that uses as few bits as 
possible? (See Reed-Solomon codes, for 
instance.) 

More bits, higher error probability.



Positional notation
for numbers

d_i is a "digit", a symbol for a value:  value( "d_i")

b is a value, the "base" of the number notation.

There is a rule to find the value, given the symbols.

unsigned 3-bit binary
binary:
--- digits = { "0", "1" }
--- base = 2

Let's do some arithmetic.
ADD:

Let's try
SUBTRACTION

w/ Carry In:

0  0   0
0  1   1
1  0   1
1  1   0

0  0   1
0  1   0
1  0   0
1  1   1



But first, let's look at a single column of subtraction All possible 1-bit
subtractions

All possible single
columns

0   0    0       0
0   0    1       1
0   1    0       0
0   1    1       0
1   0    0       1
1   0    1       1
1   1    0       0
1   1    1       1

3-bit, bit-wise NAND



It's almost this simple in the LC3.

This is a 3-bit version of LC3 (sort of).

Some sort of function f converts 4-bit 
opcode to 2-bit ALU.ctl. In uCoded control, 
this function is implemented as control bits 
in ROM.



We have 8 possible 3-bit patterns (symbols).
 
Choose an interpretation.

NB--We represent the 
value using another 
encoding: base 10!What other number values are we interested in?

Are other encodings useful?



sanity check: 0 - 1?2's-Complement Encoding:
represent POSTIVE and NEGATIVE

Which value makes sense?



To Get 2sComp( x ):

Negate bits, 
add 1.

Produce - x  in 2's Complement (regardless of whether  x  is + or -):

Negate bits (aka 1's Complement), then add 1.

Simple logic: inverter on each bit, carry in to lowest FA set to 1.

==> We can use adder for signed subtraction

Note: columns with borrows give a bit flip. Notice: The 1st non-zero bit 
of x gets copied to S:
        borrow = 10
subtract  bit = - 1
-----------------------
       sum bit =   1

How do we do this 
simply, in general?

NB--These are the 

negated bits of x.



x > 0, y > 0
 and x+y < 0

0xxx
0yyy
---------
1sss

x < 0, y <0
and x+y > 0

1xxx
1yyy
----------
0sss

x > 0, y < 0
and x-y < 0

   0xxx
- 1yyy  => 0zzz
----------
   1sss

x < 0, y > 0
and x-y > 0

  1xxx
- 0yyy  => 1zzz
----------
  0sss

Instruction
decoder:
Each opcode
has its own 
1-bit signal.



3-bit, parallel load, left-shift 

Parallel write/load : we=1 and S=0:    Q[2:0]  <==    D[2:0]                 after next clock tick. 

Shift Left :                we=1 and S=1:    Q[2:0]   <==  { Q[1:0], IN }         after next tick.

What about 
signed numbers?

Convert to           
unsigned.

Multiply.

Convert back.

 x == 0 :   S == carry in;  carry out == 0.
 x == 1 :   S == carry in;  carry out == 1.



Can we simplify multiplier? 
-- Get rid of zero register and mux. 
-- Use y_i to write-enable S register.

Can we speed up multiply? We currently iterate n times 
to multiply n-bit numbers. Add more hardware? How?

What if y has a 0 bit? Then add 0 instead 
of shifted x: e.g., y = 0...101 add 0, not B.

MULTIPLY:
LSR: partial products, initially x.
S:     partial sum, initially 0.
RSR: initially y.
Z:      all 0s

RSR's low-bit MUXes Z or LSR to 
adder.

 x X 7  ==   xn  xn-1  ...  x1  x0   X   ( 4 + 2 + 1 )

              ==

                                xn  xn-1  ...  x1  x0   X   ( 1 )

               + xn  xn-1  ...  x1  x0   X   ( 2 )

               + xn  xn-1  ...  x1  x0   X   ( 4 )

             ==

                                xn  xn-1     ...  x1  x0

           + xn  xn-1     ...   x1   x0  0

      + xn  xn-1   ...      x1   x0   0   0

   

                    1  0  1  1
               X   0  1  0  1
--------------------------------
+  0  0  0  0  0  0  0  0
+  0  0  0  0  1  0  1  1
+  0  0  0  0  0  0  0  0
+  0  0  1  0  1  1  0  0
+  0  0  0  0  0  0  0  0
---------------------------------
    0  0  1  1  0  1  1  1



divByAddition( x, k )
    q = 0;    y = 0
    while ( x - y >= k )
        q++
        y = y + k
    endWhile

divBySubtraction( x, k )
    q = 0;
    while( x >= k )
        q++
        x = x - k
    endWhile

   left-shift( y )  ==   y X 2        ===>      right-shift( y ) ==  y / 2 Ok, for division by a 
power of 2.

R-shift(n) = divide-by-2^n

If divisor is not power of 2?

1. Try n-th power of 10, dn00...0

         subtract:   x - k x dn00...0

2. result x non-negative?

         yes:  save  dn00...0 ,  x  <===  x

3. next power of 10:   n  <===  n-1 



INTEGER (unsigned) DIVISON
   x  = kq +r          k = divisor,   q = quotient,  r = remainder  (ignore for now).   FIND q.

Move notNegative  
RIGHT one bit position 
after each SUB.

Move q LEFT one bit 
position after each SUB. 

(write is to lowest bit 
position)



K-scaled integers: n-bit integer x represents k*x,  range = k*2^n.

We can't represent every number.
We choose what type of errors to live with.

The part inside "( ... )" is essentially integer.
The exponent determines the scaling.

 ===> geometrical-progression scaled integers

Can we get more 
consistent errors?



How many bits do we need for 4 decimal digits of precision?

Well, maybe we can live with that?
We have to stop somewhere.



Sorting is most common operation for numerical data

Checking x > y seems hard for floats.

Checking n > m for ints:  do ( n - m ) and check sign bit, if 0 then True.

Can we check x > y using integer hardware?

That is, can we treat x and y as if they were integers, and do integer subtraction?



regardless of the fractional parts.



E.G., 3-bit exponents in 2s-complement

Negative exponents look smaller than positive exponents 
AS unsigned ints.

value       e in 2s-comp                    E in excess-3
   +3              011            +011  ==>   110
   +2              010            +011  ==>   101
   +1              001            +011  ==>   100
     0              000            +011  ==>   011
    -1              111            +011  ==>   010
    -2              110            +011  ==>   001
    -3              101            +011  ==>   000   *
    -4              100            +011  ==>   111   *

* These codes are reserved for special uses.
   The exponent values -3 and -4 are not allowed.
 

E  =  e  +  011









"message" could be a bit, a string of bits, a 
character, a page of characters, ...

Code words 00 and 11 are good data, 10 and 01 indicate 1-bit errors. Last bit is "parity" bit, odd parity 
codeword indicates error. Works for k-bit messages w/ 1 parity bit (if 2-bit errors very unlikely).

1-bit Error Correction w/ 3-bit code words:
"0"  ==>  000
"1"  ==>  111

001  ==>  "0"              011  ==>  "1"
010  ==>  "0"              101  ==>  "1"
100  ==>  "0"              110  ==>  "1"

1-bit Correction, 2-bit Detection

-- odd parity: 1-bit error corrected

-- exactly two 1's: 2-bit error detected

-- otherwise: no error

How many extra bits, at minimum? 
Depends on noise in channel:
Shannon Noisey Coding Theorem.

We use 4 bits, 1-bit data.

So much for encoding data. We could go on to audio, video, ...  But, back to noise and errors.



1-bit error:  can detect and correct

2-bit error: cannot detect

What can we do about 2-bit errors?
Add another parity bit.

1-bit error: detect + correct
2-bit error: detect



Hamming 7,4 code:
Find distances to all other code words.
GREEN-PARITY: Bits[ 3, 2,      0 ]
BLUE-PARITY:    Bits[ 3,     1,  0 ]
RED-PARITY:      Bits[     2,  1, 0 ]



ASCII (See back cover of PP)

HEX CODE    MEANING   Printable?
    00                    NUL            no
    01                    SOH           no
   ...                      ... 
   20                   space           yes
   ...                      ...
   30                    "0"               yes
   31                    "1"               yes
   ...                      ...
   41                    "A"               yes
   42                    "B"               yes
   ...                      ...
   61                    "a"               yes
   62                    "b"               yes
   ...                      ...
   7A                    "z"               yes
   ...                      ...
   (other stuff, non-standard)

What to Print                         Starting Memory Address            What is displayed (left-to-right)

4-byte number (in hex notation)                 0                                   6D412F32

two 2-byte numbers (in hex)                      0                                   2F32    6D41

four 1-byte numbers (in hex)                      0                                  32  2F  41  6D

one 4-byte string                                        0                                    2   /     A    m   

(see "od" in unix)




