
FSM has input/output, but
from/to where?

(1) Other FSMs in same
machine

(2) Feedback loops

We like to separate state into two "types", control and data state.
Eg., some state elements are for "control" state, and some are for
"data" state.

 latch

 latch SR
 latch

We often want to control whether or not the FF will be written into when the
clock pulse arrives: add an "enable" input. When enable is 0, the current state
is written back into the FF. Otherwise, D is written.

2-Phase Clocking

Separate signals for each latch's
enable in FlipFlop. On breadboard
we connect PHASE-1 to one data
switch, PHASE-2 to another.

If there is no feedback path from Q to D, we do not
need a flip-flop, we can use a write-enable latch
instead. Datapaths sometimes can use latches.

Probrammable Logic Array
consists of two parts:

PLA, part 1.

A decoder,
 can be thought of as:

a) activates exactly one
output from input code.

b) generates all minterms
from input.

PLA, Part 2.
A means of OR'ing minterms to produce function outputs.

Can share the same minterms: we can economically produce multiple functions at once.

Programmable: minterm lines can be "blown" to disconnect them:
 selects minterms included in the function.

IMPLEMENTING FUNCTIONS as ROM

FSM functions in ROM

 i input bits to FSM
 k output bits
 n state bits (2^n states)

possible (state, input) pairs == 2^(n+i)

 ===> 2^(n+i) words in ROM
 n+i address bits

ROM word == (next-state, output)

 ====> (n + k)-bit word size

FSM in ROM (n-bit state, i-bit input, k-bit FSM output)

 (STATE, INPUT) is ROM address
 n bits + i bits ===> 2^(n+i) ROM locations

 (NEXT-STATE, FSM-OUTPUT) is ROM output
 n bits + k bits ====> (n+k) bits per location

===> 2^(n+i) location by (n+k)-bit word ROM

ANY FSM (Mealy or Moore) can be built as a ROM

NOTE: A Moore machine's output depends only on state
===> use n-bit addresses, one ROM location per state.

BUT, next-state depends on current-state+input. Encode
part of next-state function in ROM word as NS-CODE,
and use external logic to calculate next-state function:
next-state = f(INPUT, NS-CODE). This is what is done
in the LC3's micro-coded controller.

Every possible FSM can be built as a ROM.

ROM is very large since there is a word for
every possible {state, input} combination.

at clock tick:

-- { current state, current input } captured
-- output changes to match captured state/input

-- Every state row has same output
 ===> Moore Machine

-- Rows for state S have differing outputs
 ===> Mealy Machine.

We can enumerate all ROMs (and
consequently all TMs/digital-computers):

Concatenate ROM content from all words:

address content
 00 00
 01 11
 10 11
 11 00

 ==> 01111000

List all n = i = k = 1 machines:
FSM-0, FSM-1, ..., FSM-256

List all n = i = k = 2 machines:
FSM-257, FSM-258, ...

and so on.

