
Can we build any 2-input, single-1-output function using what we already know?
We can build (NOT, NOR, NAND) from CMOS gates, and combine them to build AND and OR.
Can we build arbitrary single-1-output functions from just these?

IF

"(A is FALSE) AND (B is TRUE)"

 is a TRUE statement.

Our simple (single-1-output) functions
are called "minterms". Our
decomposition is called a "minterm
expansion of f ".

We now have all possible simple 2-
input functions, ie., our minterms
m0, m1, m2, and m3.

And we know how to build each
from the 2-input gates we already
have and NOT.

So, we can now build ANY 2-input
function! Just OR these as needed.

Can we do the same for 3-input functions? We CAN build all 2-input functions.
BUT, WHAT is a 3-input function?
CAN we build from 2-input functions?

AND(X ,Y, Z)

is that the same as,

AND(AND(X, Y), Z) ???

Handy tricks for (1) proving algebraic properties or doing algebraic operations, and (2)
converting logic circuits from one type of logic gates to another. (Aside: can you prove
Duality?)

Build any k-input function? Use k-ary minterm expansion.

Build k-ary minterms from 2-input gates we already have?

MAXTERM EXPANSION

What sort of functions are these minterms?

Karnaugh Maps are truth tables that allow us to find simpler logic expressions (and
circuits). This is something that can also be done algebraically, but is usually harder
that way. Is there a general procedure for minimizing circuits? (Is it computable?)

Find a collection of terms that:
1. covers all ones
2. has the fewest terms possible.

Term = a region where one or more variables are "don't cares": the output does not change
when the variables change value, those variables make no difference. The values of the
remaining variables define the term.

So, what can we say about mult-bit symbols as output from our Boolean functions? Deal with
each bit of output symbol individually.

In general, we can now handle any functions with m-bit input and n-bit output.
We can implement in hardware:

===> ANY finite symbol set of size 2^k by using {0, 1}^k multi-bit symbols
===> ANY finite combination of finite sets
===> ANY functions mapping from any combination to any combination

