
Lec-6-HW-1-devices Reading: PP, Chapter 3:
§ 3.1 (transistors),
§ 3.2 (OR, NOR, AND, NAND, and DeMorgan),
§ 3.3 (DEC, MUX, FA, PLA)Problems, PP, Chp 3:

3.1 (n and p transistors),
3.2 (cmos inverter),
3.3 (how many 2-input functions?),
3.5 (trans. ckt. => truth table),

3.6 (as 3.5, but tricky ckt.),
3.7 (fix broken trans. NAND ckt.),
3.8 (label ckt. to match func.),
3.9 (expression to truth-table),

3.10 (NOR truth-table),
3.11a (trans. ckt. for 3-AND, 3-OR),
3.11b (conduction diagram for 3.11a using input vectors),

3.16 (truth-table to PLA [connect parts of fig. 3.17])

A = 0: Then D = C, C can change and D will change with C.
A = 1: Then D = B, B can change and D will change with B.

A = 0: D is forced to 1, regardless of B

B = 0: Then D is forced to 0.
B = 1: Then remains D = 1.

If B changes, then D will remain = 0
thereafter, regardless of how B
changes, assuming A remains = 1.

(Problem)--------------
Basic CMOS gates are NOR, NAND, NOT. Electric comes with three basic gates:

Components.schematic.{AND}
Components.schematic.{OR}
Components.schematic.{BUF}

Invert the outputs to get (NAND, NOR, NOT):

 ^{output crosshair}
 Edit.TechnologySpecific.TogglePortNegation

(There must be a wire already attached to the gate's output for this to work.)

Make a testbench which sets all possible inputs for the NOR. Record the input and output results as a truth table. You
will need reg types to drive the gate's inputs: in your test bench define a "reg" for each input, use "assign" to connect the
reg-type to the input wire, and assign values to those regs in an "initial" statement. Do the same for the NAND. Turn in
the truth tables on paper and checkin the circuits to you branch (perhaps use a separate library).

SOLN
Here's testbench code for both gate types:

/**/ reg Asrc; reg Bsrc;
/**/ assign A = Asrc; assign B = Bsrc;
/**/ initial begin
/**/ Asrc = 0; Bsrc = 0; #1 $display("(A, B) = (%b, %b), out = %b", A, B, out);
/**/ #1 Asrc = 0; Bsrc = 1; #1 $display("(A, B) = (%b, %b), out = %b", A, B, out);
/**/ #1 Asrc = 1; Bsrc = 0; #1 $display("(A, B) = (%b, %b), out = %b", A, B, out);
/**/ #1 Asrc = 1; Bsrc = 1; #1 $display("(A, B) = (%b, %b), out = %b", A, B, out);
/**/ $finish;
/**/ end

SOLN
Here's the output using NAND:

(A, B) = (0, 0), out = 1
(A, B) = (0, 1), out = 1
(A, B) = (1, 0), out = 1
(A, B) = (1, 1), out = 0

(Problem)----------------
In Electric, implement a NAND-NAND latch. Test its behavior by driving your circuit with all possible sequences of
inputs. For latches, the history of inputs is important, not just the current input, because latches have state. That is,
they remember what happened before. Do the same for the NOR-NOR latch, and comment on the difference between
the NAND-NAND latch and the NOR-NOR latch. Turn your answers in on paper and check in your testbench and its
output.

Note: For the NAND-NAND latch, we are interested in 3-
step sequences that begin and end with A=1, B=1 (for
NOR-NOR, A=0, B=0). For instance, here is a 3-step
NAND-NAND sequence: (1,1), (0,1), (1,1). Here is
another that is particularly interesting:

Asrc = 1;
Bsrc = 1;
#1
Asrc = 0;
Bsrc = 0;
#1
Asrc = 1;
Bsrc = 1;

That sequence might give different results from this one.
Why? Does this mean we should use random delays for
signal propagation through our gates to be more
physically realistic? HINT--metastability problem.

Asrc = 1;
Bsrc = 1;
#1
Bsrc = 0;
Asrc = 0;

#1
Asrc = 1;
Bsrc = 1;

SOLN
The difference between the two latch types is that the NAND latch is stable (keeps its last state) for input (A,B) = (1,1) while the
NOR latch is stable for (0,0). For both types, (0,1) sets Q to 1 and (1,0) resets Q to 0.

The input sequence (0,0), (1, 1) to the NAND latch should result in an unknown value for Q. Symmetrically, the sequence (1,1),
(0,0) should make Q unknown for the NOR latch. However, this happens for some verilog simulated circuts and not others.

For me, unknowns did not occur for these latches, except for the first state. For the NAND latch, inputs (A, B) are (-S, -R).
For the NOR latch, (A, B) = (R, S). (Setting "R" to 1 forces Q to 0; setting "S" to 1 forces Q to 1. "R" is for "reset"; "S" is for
"set". "-S" means "NOT(S)", and setting "-S" to 0 forces Q to 1.)

SOLN
Testbench output:

(A, B) = 11 Q=x
(A, B) = 01 Q=1
(A, B) = 11 Q=1
(A, B) = 10 Q=0
(A, B) = 11 Q=0
(A, B) = 00 Q=1
(A, B) = 11 Q=1
(A, B) = 00 Q=1
(A, B) = 11 Q=1

Note that the simulation
does not show unknowns
for the indeterminate input
(0,0).

/**/ reg Asrc; reg Bsrc;
/**/ assign A = Asrc; assign B = Bsrc;
/**/ initial begin
/**/ #1 Asrc = 1; Bsrc = 1;
/**/ #1 $display("(A, B) = %b%b Q=%b", A, B, Q);
/**/ #1 Asrc = 0; Bsrc = 1;
/**/ #1 $display("(A, B) = %b%b Q=%b", A, B, Q);
/**/ #1 Asrc = 1; Bsrc = 1;
/**/ #1 $display("(A, B) = %b%b Q=%b", A, B, Q);
/**/ #1 Asrc = 1; Bsrc = 0;
/**/ #1 $display("(A, B) = %b%b Q=%b", A, B, Q);
/**/ #1 Asrc = 1; Bsrc = 1;
/**/ #1 $display("(A, B) = %b%b Q=%b", A, B, Q);
/**/ #1 Asrc = 0; Bsrc = 0;
/**/ #1 $display("(A, B) = %b%b Q=%b", A, B, Q);
/**/ #1 Bsrc = 1; Asrc = 1;
/**/ #1 $display("(A, B) = %b%b Q=%b", A, B, Q);
/**/ #1 Asrc = 0; Bsrc = 0;
/**/ #1 $display("(A, B) = %b%b Q=%b", A, B, Q);
/**/ #1 Bsrc = 1; Asrc = 1;
/**/ #1 $display("(A, B) = %b%b Q=%b", A, B, Q);
/**/ $finish;
/**/ end

SOLN
The NOR-NOR solution is similar.

