
To build any TM, WE NEED:

--- (1.) FSM:
 state
 logic functions (output and next-state)

--- (2.) Tape: methods to R/W symbols, we'll use registers (RAM).

--- (3.) Symbol set = a set of fixed length bit strings, e.g.,
 S = {0,1} (2 symbols)
 S = {00, 01, 10, 11} (4 symbols)
 S = {000, 001, 010, 011, 100, 101, 110, 111} (8 symbols)

--- in hardware for simulator/computer/UTM.
--- in description language for any TM.

OUT
 (A, 0) ===> 0
 (A, 1) ===> 1
 (B, 0) ===> 1
 (B, 1) ===> 0

OUT
 (0, 0) ===> 0
 (0, 1) ===> 1
 (1, 0) ===> 1
 (1, 1) ===> 0

next_state
 (A, 0) ===> A
 (A, 1) ===> B
 (B, 0) ===> B
 (B, 1) ===> A

next_state
 (0, 0) ===> 0
 (0, 1) ===> 1
 (1, 0) ===> 1
 (1, 1) ===> 0

able to describe:

--- Arbitrary set of states, including regs (= vars)
--- Arbitrary set of symbols
--- Arbitrary branching (via binary trees)
--- RW to tape
--- Arbitrary functions (next-state, output)

--- current state (PC and vars)
--- read tape (LDR)
--- OUT:
 ADD, AND, NOT ...
--- next-state:
 ADD, AND, NOT ...
--- write tape (STR)
--- change state
 PC++, JMP, BR
 STR ===> new data state (vars)
 STR ===> new control state

Description uses small pieces,
"instructions" are "executed"

instructions
for state 0

instructions
for state 1

FSM Controller uses registers (e.g., PC) to remember:
--- simulated machine's state (control + data states)
--- simulated symbols read (RegFile)
--- simulated write symbols (RegFile)
--- step of simulation (UTM's controller's state)
--- partial steps of function evaluations (next-state, output)
 data registers, PSR, on tape, ...

description of
simulated TM

Universal (able to simulate any TM)

--- language to describe any TM,
--- Simulator that understands that language.

vars,
scratch,

Feedback loop:
state change,
NS change,
state change,
NS change, ...

This is what we need for implementing STATE.

Two Ways

(A) for any x
 describe how to evaluate f (x) E.g. f (x) = 2 x

(B) provide a table giving f (x) for any x
 E.g.
 (x) f (x)
 ------- -------
 0 1
 1 0

A-Reg == controller's current state
 addresses uCode ROM
 gives memory word at output

ROM Word == datapath control bits
 C-Reg has current control word
 controls datapath

next-state fields of C-Reg
 Part of Controller's next-state function

Control branching (the rest of next-state function)
 -- 2-way, NS1 or NS2

 -- MUX.select = f (STATE, IR, ...)

 LC3 ucode branching also includes

 one-step, 16-way branching (DECODE).

Advantages of ucode controller:

 -- easier to change
 -- easier to figure out
 -- easier to expand
 install bigger ROM.

Advantages of "random logic" controller:

 -- faster
 -- smaller (?)
 -- distributed throughout machine

As a general FSM,
it looks like this,

Caveat: The C-Reg is just to
make the picture clearer, it
doesn't actually exist in LC3.

WE HAVE (suppose for now)

 --- 1-bit state elements
 --- 1-bit function elements

HOW to put them together?

IN Q2 Q1 Q0 D2 D1 D0
-------------------------- ---------------------
0 0 0 1 (A) 0 0 1 (A)
1 0 0 1 (A) 0 1 0 (B)
0 0 1 0 (B) 0 1 0 (B)
1 0 1 0 (B) 1 0 0 (C)
0 1 0 0 (C) 1 0 0 (C)
1 1 0 0 (C) 0 0 1 (A)
* * * * x x x

* rows not shown, don't matter?
X is for don't care, either 0 or 1.

IN Q1 Q0 D1 D0
---------------------- ------------
0 0 0 (A) 0 0 (A)
1 0 0 (A) 0 1 (B)
0 0 1 (B) 0 1 (B)
1 0 1 (B) 1 1 (C)
0 1 1 (C) 1 1 (C)
0 1 1 (C) 0 0 (A)
* * * x x

* rows cannot be reached.

IF we have a universal language (able to describe any TM)

All we need to know is How To Build:

 --- 1-bit state elements?

 --- 1-bit functions?

