TM Twplementdion

> OuVTPuT

INPVT

\ L HEE Il et
FSM implere™—> Stae |5
Elemanks

A)

To build any TM, WE NEED:
--- (1.) FSM:
(output and next-state)
--- (2.) Tape: methods to R/W symbols, we'll use registers (RAM).
--- (3.) Symbol set = a set of fixed length bit strings, e.qg.,
S ={0,1} (2 symbols)

S ={00, 01, 10, 11} (4 symbols)
S = {000, 001, 010, 011, 100, 101, 110, 111} (8 symbols)

Build €SM || even-odd parity

OUT: { }X{Syhl)o’s}—% {sy»l)a,s}
nex .g,’;l'e: { }X{sylml)o’s} ——>{ }
uT ouT
(9 29 wde (0% ZZ9

symbals} = €01 i (1) =
i % ={ 3 el\ioé;{ % next_state next_state
§ (1); B fneode § :(1); .
We Need: 155 e SO e

--- in hardware for simulator/computer/UTM.
--- in description language for any TM.

Universal (able to simulate any TM)

--- language to describe any TM,
--- Simulator that understands that language.

able to describe:

--- Arbitrary set of states, including regs (= vars)
LANGUAGE --- Arbitrary set of symbols
--- Arbitrary branching (via binary trees)
--- RW to tape
--- Arbitrary functions (next-state, output)
description of
U TM/S\.WU‘G‘—'\-Q‘-/COMP&QV simulatid ™

--- current state (PC and vars)
--- read tape (LDR)
--- OUT:
ADD, AND, NOT ...
-- next-state:
ADD, AND, NOT ...
--- write tape (STR)
--- change state
PC++, JMP, BR

STR ===> new data state (vars)
STR ===> new control state

Description uses small pieces,
"Instructions" are "executed"

instruction
for state 0

F;S g} Datfapath
hireler Reg i le
PC Resd

— | l
I —
MAR } I
MR I
ALV
PSR w'?k

S

el (N5 ‘
\m""% J&"'q SIJVMJS \slgrr::[ch,

FSM Controller uses registers (e.g., PC) to remember:
--- simulated machine's state (control + data states)

--- simulated

(RegFile)

--- simulated write symbols (RegFile)

--- step of simulation (UTM's controller's state)

--- partial steps of function evaluations (next-state, output)
data registers, PSR, on tape, ...

STATE ELEMENTS
Pos. edye-Tr i‘)‘)"x"'é
Fr

Peoblew
chg ban
the? door

IN
=

Feedback loop:
state change,
NS change,
state change,
NS change, ...

@ I —Nest -state

function

ovT in
This is what we need for implementing STATE. T__ Q D" H: D IJ
/\ We
| L.
clock

DescfiLi Vla Fu«\c"'t'ov\s

Two Ways

(A) forany x
describe how to evaluate f(x) Eg. f(x) =2x

(B) provide a table giving f(x) for any x

(B) wicrocoded Co vcoller

nest-state Y odtpet fvﬂf:hﬁhs

A-Re.g ADDR

2t M Code
RoOM

<Tae ovT

TR]

O-H\C Y m) \)+S

Advantages of ucode controller:

-- easier to change
-- easier to figure out
-- easier to expand
install bigger ROM.

Advantages of "random logic" controller:
-- faster

-- smaller (?)
-- distributed throughout machine

MUX [5e] ee ¢-Reg

A-Reg == controller’s
addresses uCode ROM
gives memory word at output

ROM Word == datapath control bits
C-Reg has
controls datapath

next-state fields of C-Reg
Part of Controller's next-state function

Control branching (the rest of next-state function)
-- 2-way, NS1 or NS2

-- MUX.select = f (IR, ...)

LC3 ucode branching also includes
one-step, 16-way branching (DECODE).

As a general FSM,
it looks like this,

C- Re%,
ROM

&
.

NS
F

IR .
A- Reg cC \g In
BEN

Caveat: The C-Reg is just to
make the picture clearer, it
doesn't actually exist in LC3.

WE HAVE (suppose for now)

A Mod-3 wachine

--- 1-bit
--- 1-bit function elements 0
~)
HOW to put them together? 6 1
1
of L
STATE £MNCopING

binary encalin
In 1‘l\o'l' Cl\&&ih} IN. J?_ date .\3;“'\';

STATE
A O 01
B 010 |
|
L& C 100 L 2

[@ D} [@_ D
'EF—J 3 stde alemerks STATE

A 00
: A
Descn]:e nex't-s"'a"'c 8 o
Pumcl C 10
wnion
IN D2 D1 DO
0 (A) 0 0 1 (A IN D1 DO
: a 0100 0 A 0 0 (A
0 (B) 0 1 0 (B) : (A) 0! (B)
1 (B) 1 0 0 (O 5 (B) 0 (B)
0 (C) 1 0 0 (O : (B) 0] (C)
e 0 (C) 0 0 (A
* rows not shown, don't matter? * * X X

X is for don't care, either 0 or 1.
* rows cannot be reached.

§’fﬂ£ 6“3

IF we have a universal language (able to describe any TM)
All we need to know is How To Build:
--- 1-bit state elements?

--- 1-bit functions?

