
TM's FSM (the CONTROL part of a TM)
 No tape
 one input two outputs
 IN OUT, MOVE

 inputs/outputs are time series:

 time: 0 1 2 3 4 5 6 ...

 IN : 0 0 0 1 1 1 0 ...
 OUT : 0 1 1 0 1 0 1 ...
 MOVE : 0 1 1 0 1 0 1 ...

Physical state changes in time.

"SEEN 0" registers that we've seen a 0.

"SEEN 1" registers that we've seen a 1.

State "registers" or "remembers"
 what we have seen.

get input

got input

Logical StatePhysical State

STATE can be thought of as consisting of two parts:

 step of operation symbol seen

1-bit register ==> 2^1 == 2 states
k-bit register ==> 2^k states

2 1-bit registers ==> (2^1)(2^1) == 4 states
2 k-bit registers ==> (2^k)(2^k) == 2^(k+k) states

Before reading input ("get-data" control state): we don't care which of upper 4 states we are in.

After reading, ("data-registered" control state) we are in one of 4 states, data is recorded.

32-bit data ==> 4G branches. We'd like to ignore data state, concentrate on control state.)

Physical system,
8 states:

control data
 0 00
 0 01
 0 10
 0 11
 1 00
 1 01
 1 10
 1 11

4 possible physical states

2 possible states Can register one of two data

BIG IDEA:

SPLIT TOTAL STATE into two parts:

--- 1. OPERATIONAL STATE
 Where we are in doing things

--- 2. DATA REGISTER STATE
 What we know at this point

registering a 32-bit input symbol :

 (2 CONTROL states) X (4G data states)

versus

-- 2 CONTROL states (+ content of reg.)

Next CONTROL state
depends on register content.

-- States === Register Transfers

-- Branches labeled
 w/ register content.

CLOCK causes:
---- register transfers
---- control state changes

REGISTERS for
---- CONTROL STATE
---- DATA

---- BOTH types change w/ CLOCK

Complete state:
(1) ready-for-data-and-reg-is-zero,
(2) got-data-and-reg-is-zero
(3) got-data-and-reg-is-one

Control state:
(1) get-data
(2) got-data

BIG IDEA:

-- Reusable sub-parts.

-- link_reg provides
 return mechanism.

Hierarchical design
-- "subroutine" is a component

Same as putting
one TM into another.

HW = SW
-- Machines/descriptions
 have hierarchical design.

 state 5
 link_reg <== 6

state 6
[link_reg]

 state 37
link_reg <== 38 state 38

OUT is continous function of IN+STATE.
STATE changes w/ clock
OUT changes w/ STATE and/or IN

function:
 OUT(in, state)

function:
 NS(in, state)

 State
 (n bits)

Are they equivalent? Check that same input
streams give same output streams.

Output in state is always the same.

Output only depends on
 current state.

split states by
 output on a transition.

function:
 OUT(state, reg)

function:
NS(in, state)

State reg
 (n bits)

AT CLOCK:

-- data_reg output changes:

 data_reg.out <== in

-- State_reg output changes:

 State_reg.out <== NS(in, state)

No changes until next tick,
even if input changes.

data reg

out(in, state)

NS(in, state)

State reg
 (n bits)

data reg
--- OUT changes w/ clock

when total STATE changes.

--- out is a function that
changes w/ in

--- OUT is a function only of

total STATE ==
(control + data registers)

In changes, OUT is steady.

Note: OUT is determined by
previous (STATE + in).

BIG IDEA: Extend simulator with additional hardware (hardware subroutines).

--- (A) simulated M's description has sub-routine, desc(MULTIPLY)

--- versus (B) add a symbol "X" to M's description

 branch to a hardware MULTIPLY subroutine:
 ===> New Simulator is FASTER,
 ===> Desc(M) is SMALLER: desc(MULTIPLY) is gone

--- Software == Hardware

Could we extend desc(M) in the same way?

 "X" in desc(M)

Translator adds desc(MULTIPY) to desc(M)?

===> Libraries, code inserted where referenced.

desc-L1(M)

uses "X".

 Translator

desc-L0(M)

+ desc-L0(MULTIPLY)

UTM
 simulates M.

(1) read desc-L1(M),
(2) see "X"
(3) write desc-L0(Mult) into desc-L0(M)
(4) fix state transistions

--- Add layers of translation

 scripting language ==> C++ ==> C ==> asm ==> ISA

--- Migrate subroutines down (maybe into UTM's hardware)

--- Simulate a different UTM ==> interpreted languages (JAVA bytecode, e.g.)

 simulate desc-L0(UTM-j)

 UTM-j has its own ISA, L-j.

L0:
language of simulator, UTM,
 "Instruction Set Architecture",
UTM's ISA.

 Simulate UTM-j, which simulates M.

Let's make things even more exciting, add Heirarchy!

 symbol "X" in L-Java,
 ===> symbol "X" in L-JVM,
 ===> desc-LC3(TM-X) ===> executed directly, not via UTM-jvm simulation
 OR
 (hardware sub-routine)

