%3\3'\'9(5

ti t
get inpu 0/0

got input @ ﬂ

'/h

"SEEN 0" registers that we've seen a 0.

"SEEN 1" registers that we've seen a 1.

State "registers" or "remembers”

what we have seen.

Physical State

ringdt [

e

ﬁifw«pnd‘
sem O

STATE can be thought of as consisting of two parts:

step of operation

ghingd
32[' sznd'

f ]

TM's FSM (the CONTROL part of a TM)
No tape
one input two outputs
IN OUT, MOVE

inputs/outputs are time series:

time: 0 1 2 3 4 5 6..

IN
ouT
MOVE :

0o 00 1 1 1 O0..
o1 1 0 1 0 1.
o110 10 1.

Physical state changes in time.

Logical State

gt inpit / \

symbol seen

(w]) ([W9]

0/ ¢

®



p)qs%cd 2 possible states Can register one of two data
device

- bt Reg g § o XA

4 possible physical states

§ N F

)

. _\, Physical system,
1-bit register ==> 2" == 2 states l_],'.-]- 2-b 8 states:
k-bit register ==> 2"K states

control data
00
01
10
11
00
01
10
11

2 1-bit registers ==> (2"1)(2") == 4 states
2 k-bit registers ==> (2"k)(2°k) == 2*(k+k) states Q“']'m\ J d:\-ox

—_ ek - A OO0

1
|
©

Before reading input ( "get-data™ control state): we don't care which of upper 4 states we are in.

After reading, ("data-registered" control state) we are in one of 4 states, data is recorded.

32-bit data ==> 4G branches. We'd like to ignore data state, concentrate on control state.)



“Contrel Stake "+ Dl Regicfe ”

BIG IDEA:

SPLIT TOTAL STATE into two parts:

--- 1. OPERATIONAL STATE
Where we are in doing things

--- 2. DATA REGISTER STATE
What we know at this point

registering a 32-bit input symbol :
(2 CONTROL states) X (4G data states)

versus
Complete state:

(1) ready-for-data-and-reg-is-zero, go)ngtgt)-ldsgta;e -- 2 CONTROL states (+ content of reg.)

(2) got-data-and-reg-is-zero g
(3) got-data-and-reg-is-one (2) got-data

Covtral Wraw c\v\w\%

Next CONTROL state
depends on register content.

-- States === Register Transfers

-- Branches labeled
w/ register content.

CLOCK causes:
---- register transfers
---- control state changes

REGISTERS for
---- CONTROL STATE
---- DATA

---- BOTH types change w/ CLOCK

O’Oj& SeolecTs hWT ST&JLQ
we Hoote, whih, pait o dak. Fe o nelloas, igroring thy rust,



Subrovtines

SuLh-UNH'S

SUR CHOMPONENT

state 5
link_reg <==

link_reg ]

BIG IDEA:
-- Reusable sub-parts.

-- link_reg provides
return mechanism.

state 37
link_reg <==

Hierarchical design
-- "subroutine" is a component

Same as putting
one TM into another.

o ) Ob,ﬂmm](' '{'FLCS W7L<> | HW = SW

- Machines/descriptions

ST ART AjGTG have hierarchical design.

o A)«ywd" “mdis" %gm(
HALT e

____>> RQUSLLIC SUL) "'“ ROU',-'."C y




Twplemenlalion of FSM

v OUT is continous function of IN+STATE.
Me&./j W@CL;M & STATE changes w/ clock
OUT changes w/ STATE and/or IN

function:

OUT( in, state) ouT 0/0

0” o’ o/
IN ‘ ”
function: 0u'lL Is et
NS( in, state) T o 57"6Amn005
: : ' —73‘-‘-&1&5
sTate new IN o o
State STd'f' + o : ' : !
(n bits) Slate ——-»/: -
/\ ——+—1> Time
To‘r}\ \/ | Tk Tk Tk
S“A‘YE cLocK
sY nAYranovs o u‘\'eo‘"‘ o/o split states by

. output on a transition.
Waore WMachine G’C@ => @ %

m Output in state is always the same. \/l ]
Output only depends on
current state.

0/. —=

Are they equivalent? Check that same input
streams give same output streams.




AT CLOCK:

function: -- data_reg output changes:

OUT(state, reg)

ouT

data_reg.out <==in

)N /1\ -- State_reg output changes:
‘;u Nc+( om A State_reg.out <== NS(in, state)
NS(in, state) Talal - STATE: No changes until next tick,
onlro| + r,ﬂ even if input changes.
sTate

next

State reg CCoh+r6(>
(n bits) — sTate

7

cLoCK M& res Hafe e = tital S"{'a:k'c

Shedtest M“'o? & - Mo Convension Bad oitpd res

l//

--- OUT changes w/ clock

dat/a\reg —> 0 uT when total STATE changes.

IN ‘ is a function that
—_—— changes w/ in

--- OUT is a function only of
total STATE ==
sTa"’c hgx'r (control + data registers)

(Coh‘f‘rcf )
State reg

nbis) . fe— sT<Te | _
/\ Note: OUT is determined by
| previous (STATE + in).

cLOoCK

In changes, OUT is steady.




BIG IDEA: Extend simulator with additional hardware (hardware subroutines).
--- (A) simulated M's description has sub-routine, desc( MULTIPLY )
--- versus (B) add a symbol "X" to M's description

branch to a hardware MULTIPLY subroutine:

===> New Simulator is FASTER,

===> Desc(M) : desc( MULTIPLY ) is gone

--- Software == Hardware

(A) bnpu?{' C\esc(M} '\mc\vlu dese (Mult)

4

versvs vm
(B) b'npu* c\esc(M\) has thto\ \\XU
e inclhded o
MULT Muﬂzfn HW

Hierarchical Translation | varisit q (A)

Could we extend desc(M) in the same way?

"X" in desc( M)
Translator adds desc(MULTIPY) to desc(M)?

===> Libraries, code inserted where referenced.



LO:

desc-L1(M) desc-LO(M)
""" | uses "x". + desc-LO(MULTIPLY) | *°*
' UTM
Translator simulates M.

read desc-

(1)

(2) see "X"

(3) write desc-LO( Mult ) into desc-LO( M)
(4)

fix state transistions

--- Add layers of translation

(M),

(

language of simulator, UTM,
"Instruction Set Architecture",
UTM's ISA.

Recalf: ad’-uﬂ% We Simy 47L¢>

the Trancfatfor

scripting language ==> C++ ==> C ==> asm ==> I[SA

--- Migrate subroutines down (maybe into UTM's hardware)

--- Simulate a different UTM ==> interpreted languages (JAVA bytecode, e.g.)

simulate desc-LO( UTM-j)

UTM-j has its own ISA, L-j.

Simulate UTM-j, which simulates M.

o’esc(UTN\J BLo

dda £e M | desc (M\L_j

i

UM,




W desc (Mx L-JVM dQSC (JV/VD LC3-TISA

Jave. kﬁe-cor}e Java Vllr-l'Ual MML\'\V\E

I

LC3
/4,07%,0
Let's make things even more exciting, add Heirarchy!
X :
===> symbol "X" in L-JVM,
===> desc-LC3( TM-X) ===> executed directly, not via UTM-jvm simulation

OR
(hardware sub-routine)



